УДК 539.172.13,539.172.16,539.171,539.142

КИНЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ КВАЗИСВОБОДНОГО РАССЕЯНИЯ ДЕЙТРОНОВ И α-ЧАСТИЦ НА КЛАСТЕРАХ ЛЕГКИХ ЯДЕР

© 2019 г. А. А. Каспаров¹, А. А. Афонин¹, Е. С. Конобеевский¹, В. В. Мицук^{1, 2, *}, С. В. Зуев¹

¹Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук, Москва, Россия

²Федеральное государственное автономное образовательное учреждение высшего образования Московский физико-технический институт (государственный университет), Москва, Россия *E-mail: vvacheslav.mitsuk@phystech.edu

Поступила в редакцию 01.10.2018 г.

После доработки 15.10.2018 г. Принята к публикации 19.11.2018 г.

Рассмотрена возможность определения кластерной структуры легких ядер на примере ⁷Li. Для получения новых данных о кластерной структуре легких ядер предлагается исследование реакции квазисвободного рассеяния (КСР) частиц на кластерах указанного ядра. При этом в качестве ядер-снарядов, вызывающих реакцию КСР, могут быть использованы протоны, дейтроны и α -частицы. Проведено кинематическое моделирование реакции КСР дейтронов с энергией 15 МэВ и α -частиц с энергией 30 МэВ на кластерах ядра ⁷Li. Результаты проведенного моделирования показывают, что использование различных ядер-снарядов в реакции квазисвободного рассеяния позволит, по-видимому, более однозначно определить кластерную структуру легких ядер.

DOI: 10.1134/S0367676519040136

ВВЕДЕНИЕ

В настоящее время изучение кластерной структуры атомных ядер является одной из важнейших проблем ядерной физики. Исследование кластеризации легких ядер (например, ⁹Be, ⁷Li) способствует более глубокому пониманию структуры ядерной материи и механизма ядерных реакций на этих ядрах (см. например [1]). Данные исследования имеют также большое практическое значение. Например, кластерную структуру ядра ⁹Ве необходимо учитывать при расчетах реакции ${}^{9}\text{Be}(\gamma, n)$, используемой для получения нейтронов в фотонейтронных источниках. К настояшему моменту получен большой массив экспериментальных данных для ядра ⁹Ве, но их детальный анализ указывает на противоречивость информации о вкладах различных кластерных конфигураций ядра ⁹Ве [1]. Для получения новых данных о кластерной структуре легких ядер предлагается исследование реакции квазисвободного рассеяния (КСР) частиц на кластерах ядра ⁷Li. При этом в качестве ядер-снарядов, вызывающих реакцию КСР, использованы протоны, дейтроны и α-частицы. Использование различных ядер-снарядов позволит обеспечить высокую точность измерений и однозначность определения кластерной структуры ядер.

МОДЕЛИРОВАНИЕ РЕАКЦИИ КВАЗИСВОБОДНОГО РАССЕЯНИЯ

В настоящей работе для определения вклада различных конфигураций в структуру легких ядер проведено моделирование реакции КСР дейтронов и альфа-частиц на кластерах ядра ⁷Li. При этом в качестве рассеянной частицы будет рассматриваться частица-снаряд.

В работе [2] рассматривалась реакция КСР дейтронов с энергией 15 МэВ на различных кластерах ядра ⁹Ве, при этом один из кластеров рассматривался как ядро, на котором рассеивается дейтрон, а оставшийся кластер рассматривался как спектатор, имеющий в выходном канале реакции малую долю передаваемого импульса. Моделирование рассматриваемых реакций проводилось с помощью программы кинематического моделирования, предназначенной для изучения реакций с тремя и более частицами в конечном состоянии [3]. В результате моделирования была получена двумерная диаграмма, отражающая зависимость энергии рассеянного дейтрона от угла его

Nº	Структура	Спектатор (<i>sp</i>)	Кластер	КСР	Конечное состояние
1	4 He + t	t	⁴ He	$d-{}^{4}\mathrm{He}$	$d + {}^{4}\mathrm{He} + t^{sp}$
2	6 Li + <i>n</i>	n	⁶ Li	$d - {}^{6}Li$	d + ⁶ Li + n^{sp}
3	${}^{6}\text{He} + p$	р	⁶ He	$d - {}^{6}\mathrm{He}$	d + ⁶ He + p ^{sp}
4	5 He + d	d	⁵ He	$d - {}^{5}\mathrm{He}$	$d + {}^{5}\text{He} + d {}^{sp} \rightarrow d + {}^{4}\text{He} + n + d {}^{sp}$

Таблица 1. КСР и кластерная структура ⁷Li в случае рассеяния дейтронов

Таблица 2. КСР и кластерная структура ⁷Li в случае рассеяния α -частиц

N⁰	Структура	Спектатор (<i>sp</i>)	Кластер	КСР	Конечное состояние
1	4 He + t	t	⁴ He	4 He $- ^{4}$ He	$^{4}\text{He} + ^{4}\text{He} + t^{sp}$
2	6 Li + <i>n</i>	n	⁶ Li	4 He $- ^{6}$ Li	4 He + 6 Li + n^{sp}
3	${}^{6}\text{He} + p$	р	⁶ He	4 He $ ^{6}$ He	$^{4}\text{He} + {}^{6}\text{He} + p {}^{sp}$
4	5 He + d	d	⁵ He	⁴ He – ⁵ He	${}^{4}\mathrm{He} + {}^{5}\mathrm{He} + d {}^{sp} \rightarrow {}^{4}\mathrm{He} + {}^{4}\mathrm{He} + n + d {}^{sp}$

вылета. Было показано, что рассеяние дейтрона на нейтронном кластере в случае структур $n + {}^{8}$ Ве и $n + {}^{4}$ Не + 4 Не практически неразличимы на двумерной диаграмме $E_d - \theta_d$. Для решения этой проблемы в [2] был предложен эксклюзивный эксперимент с регистрацией помимо дейтрона второй частицы – нейтрона.

Трудности с выделением вкладов от различных конфигураций возникают и в случае рассеяния дейтронов на кластерах ядра ⁷Li. Проведем рассмотрение кластерных конфигураций ядра ⁷Li и рассеяния различных частиц на кластерах (табл. 1 и 2). Возможными кластерными конфи-

Рис. 1. Двумерная диаграмма $E_d - \theta_d$: 1 - 4 – события, соответствующие реакциям 1–4 табл. 1.

гурациями ядра ⁷Li являются: (⁴He + t), (⁵He + d), (⁶He + p), (⁶Li + n).

На рис. 1 показана моделированная диаграмма $E_d - \theta_d$ для реакции КСР дейтрона для различных кластерных конфигураций ядра ⁷Li.

Данная диаграмма показывает, что при малых углах вылета дейтрона различимы кластерные структуры (⁴He + *t*), (⁶Li + *n*) и суммарная конфигурация (⁵He + *d*) и (⁶He + *p*). Для разделения вкладов (⁵He + *d*) и (⁶He + *p*) можно использовать квазисвободное рассеяние α -частиц с энергией 30 МэВ на кластерах ядра ⁷Li (табл. 2). На рис. 2 показана моделированная диаграмма $E_{\alpha}-\theta_{\alpha}$ реак-

Рис. 2. Двумерная диаграмма $E_{\alpha} - \theta_{\alpha}$: *1*-4 – события, соответствующие, реакциям 1-4 табл. 2.

Рис. 3. Энергетические спектры α -частиц при рассеянии на кластерах, соответствующие реакциям 1–4 табл. 2 в случае угла рассеяния 20°.

ций КСР α -частиц для различных кластерных конфигураций ядра ⁷Li. Видно, что в диапазоне углов рассеяния (40°-60°) можно разделить вклады от кластерных структур, соответствующие случаям 3 и 4 табл. 2, т.е. кластерные конфигурации (⁵He + *d*) и (⁶He + *p*).

Рассмотрим энергетические спектры α -частиц (рис. 3 и 4), рассеянных на кластерах 1–4, при двух углах рассеяния (20° и 50°). Спектр, соответствующий углу рассеяния 50°, показывает возможность разделения вкладов от рассеяния на кластерах ⁶He и ⁵He соответствующих конфигурациям (⁵He + *d*) и (⁶He + *p*), в отличие от спектра при рассеянии на угол 20°, который позволяет разделять только вклады от конфигураций (⁴He + *t*), (⁶Li + *n*) и от суммарной конфигурации (⁵He + *d*) и (⁶He + *p*). Таким образом, использование различных ядер-снарядов и регистрация их под определенными углами позволит обеспечить однозначное определение кластерной структуры ядер.

ЗАКЛЮЧЕНИЕ

В представленной работе рассмотрена возможность изучения кластерных структур легких ядер — ⁷Li в реакции квазисвободного рассеяния дейтронов и альфа-частиц. Одна из главных трудностей исследования кластерных структур ядер в инклюзивной реакции КСР — проблема разделе-

Рис. 4. Спектры α -частиц при рассеянии на кластерах, соответствующих реакциям 1–4 табл. 2 в случае угла рассеяния 50°.

ния вкладов отдельных структур, когда области событий, соответствующих двум разным структурам, перекрываются на диаграммах угол-энергия рассеянной частицы. Один из методов решения данной проблемы представлен в работе [2] – эксклюзивный эксперимент с регистрацией двух рассеянных частиц. В настоящей работе предложен другой метод определения вклада различных конфигураций в кластерную структуру ядра, основанный на использовании различных ядерснарядов, с последующим сравнением энергетических спектров вторичных частиц для различных углов рассеяния. Результаты кинематического моделирования реакций квазисвободного рассеяния позволяют надеяться на успешное применение этого метода в случае изучения кластерной структуры ядра ⁷Li.

СПИСОК ЛИТЕРАТУРЫ

- 1. Denikin A.S., Lukyanov S.M., Skobelev N.K. et al. // Phys. Part. Nucl. Lett. 2015. V. 12. № 5. P. 703.
- 2. Зуев С.В., Каспаров А.А., Конобеевский Е.С. // Герценовские чтения – 2018: материалы научн. конф. 09–13 апреля 2018 г. СПб. РГПУ им. А.И. Герцена, 2018. С. 254.
- Зуев С.В., Каспаров А.А., Конобеевский Е.С. // Изв. РАН. Сер. физ. 2014. Т. 78. С. 527; Zuyev S.V., Kasparov A.A., Konobeevski E.S. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. P. 345.