УДК 539.124.17

ЛЕПТОННЫЕ ЗАРЯДЫ В КАРТИНЕ ТОКОВЫХ ОПИСАНИЙ СЛАБЫХ ПРОЦЕССОВ

© 2019 г. Ю.И.Романов*

Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский Государственный Университет им. А.Н. Косыгина", Москва, Россия

**E-mail: romanov.yu.i@mail.ru* Поступила в редакцию 01.10.2018 г. После доработки 15.10.2018 г. Принята к публикации 19.11.2018 г.

Вводится описание семейств лептонов на основе "заряженного" l_{ch} и "нейтрального" ("нейтринного") l_v квантовых чисел с сохранением их суммы L_{ch} и полного аромата L_v . Представления четырехкомпонентной теории нейтрино расширены включением тауонного и нового, четвертого лептонных семейств. (Не)диагональные лептонные процессы изучены на основе взаимодействия нейтральных (NC) и заряженных (CC) слабых токов. Показано, что информация о токовых константах может быть получена в результате измерения спектров электронов отдачи и полных сечений упругих ve- и $\tilde{v}e$ -рассеяний.

DOI: 10.1134/S0367676519040197

В настоящей работе, в развитие [1], продолжен анализ (не)диагональных лептонных процессов, рассматриваются новые способы введения лептонных чисел, возможности изучения структуры слабых токов.

Совокупность опытных данных согласуется с аддитивной формой описания лептонов. В рамках этой схемы заряженному и нейтральному лептонам каждого поколения (в первоначальном виде первых двух [2, 3]) приписывают квантовое число – лептонный заряд: электронный l_e , мюонный l_{μ} и тауонный l_{τ} . До открытия нейтринных осцилляций было принято считать их сохраняющимися. Осцилляционные представления о нейтральных лептонах приводят к выводу, что по отдельности лептонные заряды в аддитивной схеме не сохраняются. Сохранение полного аддитивного числа (их суммы) $L_l = l_e + l_{\mu} + l_{\tau}$ пока не исключается.

Расширяется простор для развития других способов введения лептонных чисел. Представим картину описания лептонов в терминах "заряженного" l_{ch} и "нейтрального" ("нейтринного") l_{v} квантовых чисел с сохранением полного лептонного числа L_{ch} и полного аромата L_{v} (см. табл. 1). Эта схема допускает все известные процессы, протекаемые в согласии с аддитивной версией. Но наряду с ними возможны и противоречащие ей.

С открытием осцилляций нейтрино, возрос интерес к недиагональным нейтральным токам,

нейтринному току $(\overline{v}_l v_e)$ и току заряженных лептонов (\overline{le}) , где $l = \mu, \tau$. Будучи механизмом изменения ароматов частиц, они являются базой для предсказания процессов, запрещаемых аддитивной схемой.

Включение тока $(\overline{v}_l v_e)$ приводит к взаимной конверсии нейтральных лептонов в реакциях

$$v_e + v_l \rightleftharpoons v_l + v_l, \quad v_e + v_l \rightleftharpoons v_e + v_e,$$
(1)

$$\mathbf{v}_e + e^- \rightleftharpoons \mathbf{v}_l + e^-, \ \mathbf{v}_e + l^- \rightleftharpoons \mathbf{v}_l + l^-,$$
 (2)

а тока (\overline{le}) — к взаимному превращению электрона и мюона (тауона)

$$v_e + e^- \rightleftharpoons v_e + l^-, \quad v_l + e^- \rightleftharpoons v_l + l^-, \quad (3)$$

$$e^{-} + l^{-} \rightleftharpoons e^{-} + e^{-}, e^{-} + l^{-} \rightleftharpoons l^{-} + l^{-}.$$
 (4)

Таблица 1. "Заряженное" и "нейтринное" квантовые числа в семействе лептонов

Лептоны	l _{ch}	$l_{\rm v}$	Антилептоны	l _{ch}	$l_{\rm v}$
<i>e</i> ⁻ , μ ⁻ , τ ⁻	1	0	e^+, μ^+, τ^+	-1	0
ν_e, ν_μ, ν_τ	0	1	$\tilde{v}_e, \tilde{v}_\mu, \tilde{v}_\tau$	0	-1

Внимание к представленным процессам возрастает с созданием новых нейтринных фабрик, развитием исследований солнечных и атмосферных нейтрино, столкновений заряженных лептонов.

В компетенции недиагональных токов находятся и упругие рассеяния лептонов электронного семейства на мюонных и тауонных лептонах

$$\mathbf{v}_e + \mathbf{v}_l \to \mathbf{v}_e + \mathbf{v}_l, \ e^- + l^- \to e^- + l^-, \tag{5}$$

описываемые также взаимодействием диагональных токов $(\overline{e}e), (\overline{l}l)$ и $(\overline{v}_e v_e), (\overline{v}_l v_l),$ сохраняющих ароматы входящих в них нейтральных лептонов.

Рассмотрим возможность изучения структуры тока ($\overline{e}e$) на основе сечений упругого рассеяния на электроне (анти)нейтрино первых двух поколений (здесь и в дальнейшем $l = e^{-}, \mu^{-}$).

$$v_l + e^- \rightarrow v_l + e^-, \ \tilde{v}_l + e^- \rightarrow \tilde{v}_l + e^-.$$
 (6)

Взаимодействие нейтральных токов (NC-описание):

$$L_{NC} = \frac{G_n}{\sqrt{2}} \overline{\nu}_l \gamma_\alpha (1 + \gamma_5) \nu_l \overline{e} \gamma_\alpha (1 + h_l \gamma_5) e,$$

$$h_l = g_A^l / g_V^l, \quad G_n = G_F g_V^l,$$
(7)

G_F – константа Ферми, приводит к дифференциальному сечению V₁е-рассеяния по кинетической энергии электрона отдачи Т (электронному спектру) в виде

$$\left(\frac{d\sigma}{dT}\right) / \sigma_0^{(n)} = \frac{1}{4E_v^2} \left\{ \left[\left(1 + |h_l|^2\right) \left(E_v^2 + \left(E_v - T\right)^2\right) - \left(1 - |h_l|^2\right) m_e T \right] + \operatorname{Re} h_l \cdot 2T (2E_v - T) \right\}.$$
(8)

В этой формуле E_v — энергия налетающего нейтрино в лабораторной системе координат, m_e – масса электрона, $\sigma_0^{(n)} = 2|G_n|^2 m_e/\pi$. Допускаем, что векторная g_V и аксиально-векторная g_A константы связи нейтрино с электронами могут быть как действительными, так и комплексными или чисто мнимыми.

Отношение r_l пределов (при $E_v \gg m_e$) сечений, отвечающих граничным значениям сегмента кинематически разрешенных углов вылета электрона $\alpha \in [0^\circ, 90^\circ]$, отнесенных к $\sigma_0^{(n)}$

$$\left(\frac{d\sigma}{dT}\right)_{T\to E_{v}} = \frac{1}{4} \Big[\Big(1 + |h_{l}|^{2}\Big) + 2\operatorname{Re} h_{l} \Big], \qquad (8a)$$

$$\left(\frac{d\sigma}{dT}\right)_{T\to 0} = \frac{1}{2}\left(1 + \left|h_l\right|^2\right),\tag{86}$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ 2019 том 83 № 4

представим в виде

$$r_l = (1 + 2\lambda)/2, \ \lambda = \frac{\text{Re } h_l}{1 + |h_l|^2}$$

Для действительных значений констант связи

$$h_l = \left(1 \pm \sqrt{1 - 4\lambda^2}\right) / 2\lambda, \qquad (*)$$

учитывая, что $\lambda = (2r_l - 1)/2$, приходим к формуле

$$(h_l)_{1,2} = \left[1 \pm \sqrt{1 - (2r_l - 1)^2}\right] / (2r_l - 1),$$
 (9)

открывающей возможность проникновения в структуру нейтрального электронного тока ($\overline{e}e$). Она выдерживает "внутреннюю" проверку соответствия отношений сечений константам связи в рамках стандартной модели (SM). Отношения сечений (8а) и (8б), равные $r_{\rm u} = 0.58$ и $r_e = 0.91$ при стандартных $h_{\mu} = 12.5$ и $h_e = 0.52$, согласно формуле (9), приводят к значениям констант $(h_{\mu})_{\mu} = 12.44$ и $(h_e)_{\gamma} = 0.51.$

Представленные предельные значения r_u и r_e предсказываются, например, граничными дифференциальными сечениями (здесь и ниже) рассеяния π_{u2} -распадных мюонных нейтрино с энергией $E_v = 29.79$ МэВ, равными 0.07 и 0.12, и электронных нейтрино с энергией $E_{v} = 10 \text{ M} \Rightarrow \text{B} - 10 \text{ M}$

0.53 и 0.58 (в единицах $\sigma_0^{(n)}$) соответственно.

Важно отметить, что формула (9) применима в области высоких энергий нейтрино. Например, для случая рассеяния нейтрино с энергией $E_{v} =$ = 0.862 МэВ, соответствующей бериллиевой линии в спектре солнечных нейтрино, отношение сечений r_e , равное 0.78, приводит к значению $(h_e)_2 = 0.3$.

Полные сечения упругих $(v_l e) - (\tilde{v}_l e, h_l \rightarrow -h_l) - (\tilde{v}_l e,$ рассеяний даются формулой

$$\sigma(NC) = \frac{|G_n|^2 s}{4\pi} \left(1 - \frac{m_l^2}{s}\right)^2 \times \left\{ \left[\left(1 + |h_l|^2\right) + 2 \operatorname{Re} h_l \right]^+ + \left[\left(1 + |h_l|^2\right) - 2 \operatorname{Re} h_l \right] \times \left[\left(1 + |h_l|^2\right) - 2 \operatorname{Re} h_l \right] \times \frac{1}{3} \left[1 + \frac{m_l^2}{s} + \left(\frac{m_l^2}{s}\right)^2 \right] - \left(1 - |h_l|^2\right) \frac{m_l^2}{s} \right\},$$
(10)

где *s* — квадрат полной энергии в системе центра масс. Здесь и ниже представляем сечения обсуждаемых реакций в пределах $s \ge m_e^2$, m_{μ}^2 (предельные полные сечения):

$$\sigma(NC) = \frac{|G_n|^2 s}{3\pi} \Big[\Big(1 + |h_l|^2 \Big) \pm \operatorname{Re} h_l \Big].$$
(10a)

		•		-		=						
Общий вид Реакции		Стандартная модель (SM), $\sin^2 \theta_W = 0.23$				Модель с комплексными константами связи (ССМ), ε ² = 0.4			V-A			
	Α	В	C	А	В	С	А	В	С	Α	В	С
$v_e e \rightarrow v_e e$	$\left(g_L^e\right)^2$	$\left(g_{R}^{e}\right)^{2}$	$g_L^e g_R^e$	$\left(\frac{1}{2} + \sin^2 \theta_w\right)^2$	$\left(\sin^2\theta_{w}\right)^2$	$\left(\frac{1}{2} + \sin^2 \theta_w\right) \times$	$1 + \frac{\varepsilon^2}{4}$	$\frac{\varepsilon^2}{4}$		1	0	
$\tilde{v}_e e \rightarrow \tilde{v}_e e$	$\left(g_R^e\right)^2$	$\left(g_L^e\right)^2$	g ^e _L g ^e _R	$\left(\sin^2\theta_{w}\right)^2$	$\left(\frac{1}{2} + \sin^2 \theta_w\right)^2$	$\times \sin^2 \theta_w$	$\frac{\epsilon^2}{4}$	$1 + \frac{\varepsilon^2}{4}$	ε ²	0	1	0
$ u_{\mu}e \rightarrow \nu_{\mu}e$	$\left(g_L^\mu\right)^2$	$\left(g_R^\mu\right)^2$	$g_L^\mu g_R^\mu$	$\left(-\frac{1}{2}+\sin^2\theta_w\right)^2$	$\left(\sin^2\theta_{w}\right)^2$	$\left(-\frac{1}{2}+\sin^2\theta_w\right)\times$	$\frac{\varepsilon^2}{4}$		4)	U
$\tilde{\nu}_{\mu}e ightarrow \tilde{\nu}_{\mu}e$	$\left(g_R^\mu\right)^2$	$\left(g_L^\mu ight)^2$	$g_L^\mu g_R^\mu$	$\left(\sin^2\theta_w\right)^2$	$\left(-\frac{1}{2}+\sin^2\theta_w\right)^2$	$\times \sin^2 \theta_w$,	

Таблица 2. Некоторые модельные представления о константах связи нейтрино с электроном

Знак "плюс" отвечает ($v_l e$)-, а "минус" – ($\tilde{v}_l e$)рассеянию.

На основе их отношения

$$R = \frac{1+\lambda}{1-\lambda}, \quad \lambda = \frac{\operatorname{Re} h_l}{1+|h_l|^2}$$

при действительных значениях констант h_l (см. (*)), с учетом связи $\lambda = (R-1)/(R+1)$, получаем формулу

$$(h_l)_{1,2} = \frac{(R+1) \pm \sqrt{(3R-1)(3-R)}}{2(R-1)},$$
 (11)

также указывающую путь к константам, характеризующим структуру тока ($\overline{e}e$). На основе отношений предельных стандартных полных сечений (10а), равных $R_{\mu} = 1.17$ и $R_e = 2.39$, формулой (11) определяются значения констант (h_{μ})₁ = 12.6 и (h_e)₂ равное стандартному. К R_{μ} приводят полные сечения $v_{\mu}e$ - и $\tilde{v}_{\mu}e$ -рассеяний 2.69 и 2.3, а $R_e - v_ee$ - и \tilde{v}_ee - рассеяний 0.55 и 0.23 соответственно.

Полагая в формуле (8) константы действительными и вводя обозначения $g_L^l = (g_V^l + g_A^l)/2$ и $g_R^l = (g_V^l - g_A^l)/2$, приходим к известному выражению для электронных спектров упругих $v_l e$ - и $\tilde{v}_l e$ $(g_L^l \leftrightarrow g_R^l)$ -рассеяний, включающему комбинации констант g_L^l и g_R^l , представленные в табл. 2:

$$\frac{d\sigma_{qe}}{dT} \bigg/ \sigma_0 = \left(g_L^l\right)^2 + \left(g_R^l\right)^2 \left(1 - \frac{T}{E_q}\right)^2 - g_L^l g_R^l \frac{m_e T}{E_q^2}.$$
 (12)

Приняты обозначения: q = v, \tilde{v} , $\sigma_0 = (2G_F^2 m_e)/\pi \cong 1.7 \cdot 10^{-48} \text{ м}^2 \cdot \text{МэB}^{-1}$. К этой формуле приводит и

лагранжиан рассматриваемых процессов, включающий электронный нейтральный ток в виде

$$j_{\alpha}^{e} = \overline{e} \gamma_{\alpha} \left[(1 + \gamma_{5}) g_{L}^{l} + (1 - \gamma_{5}) g_{R}^{l} \right] e.$$
(13)

Полные сечения даются выражением

$$\sigma_{qe}/\sigma_{0e} = \frac{2\omega^2}{2\omega+1} \times \left(\left(g_L^{\prime}\right)^2 + \left(g_R^{\prime}\right)^2 \frac{4\omega^2 + 6\omega + 3}{3(2\omega+1)^2} - g_L^{\prime}g_R^{\prime} \frac{1}{2\omega+1} \right),$$
(14)

где $\sigma_{0e} = \sigma_0 m_e, \, \omega = E_q / m_e.$

Анализ сечений проведем в пределе $E_q \gg m_e$, пренебрегая в формулах (12) и (14) интерференционными слагаемыми. Это допустимо, так как интерференция левых и правых спиральных состояний для ультрарелятивистской частицы "затухает".

При малых углах вылета электрона $T \to E_q$ отношение спектров $r_q \equiv r'_l$ определяется отношением квадратов левой g'_L и правой g'_R констант. Учитывая, что

$$(g'_L/g'_R)^2 = \left(\frac{1+h_l}{1-h_l}\right)^2,$$
 (**)

имеем

$$(h_l)_{1,2} = \frac{\left(\sqrt{r_q} \pm 1\right)^2}{r_q - 1},$$
 (15)

или

$$(h_l)_1 = \frac{\sqrt{r_q} + 1}{\sqrt{r_q} - 1}, \ (h_l)_2 = \frac{\sqrt{r_q} - 1}{\sqrt{r_q} + 1}.$$
 (15a)

Согласно (**), отношение стандартных электронных спектров r'_{μ} определяется значением, равным 1.37. Оно же предсказывается отношением граничных ($\alpha = 0^{\circ}$) дифференциальных сечений $\nu_{\mu}e$ -и $\tilde{\nu}_{\mu}e$ -рассеяний 0.074 и 0.054 и на основе (15а) приводит к (h_{μ})₁ = 12.76, а отношение $r'_{e} = 10.05 - \kappa$ стандартному значению константы (h_{e})₂.

Отношение пределов полных сечений определяется выражением

$$R = \frac{\left(g_{L}^{'}\right)^{2} + \frac{1}{3}\left(g_{R}^{'}\right)^{2}}{\left(g_{R}^{'}\right)^{2} + \frac{1}{3}\left(g_{L}^{'}\right)^{2}}.$$

С учетом связи констант (**) оно принимает вид

$$R = \frac{1 + h_l + h_l^2}{1 - h_l + h_l^2}$$

открывая путь к формуле (11).

Формулы (9), (11) и (15) готовы к предсказаниям значений обсуждаемых отношений h_l токовых констант g_V^l и g_A^l в ходе прецизионных измерений сечений упругих (анти)нейтринно-электронных рассеяний в области высоких энергий.

Предполагая, что токовые константы могут быть комплексными, в формулах (12) и (14) следует произвести замены $\left(g_{L}^{l}\right)^{2}
ightarrow \left|g_{L}^{l}\right|^{2}, \left(g_{R}^{l}\right)^{2}
ightarrow \left|g_{R}^{l}\right|^{2}$ и $g'_L g'_R \to \left[(g'_L)^* g'_R + (g'_R)^* g'_L \right] / 2.$ В табл. 2 приведены комбинации констант, соответствующих модели [4], согласно которой для v_ee-рассеяния $g_V = 1, g_A = 1 - i\varepsilon, \varepsilon = \sqrt{0.4}$. Ниже используем аб-бревиатуру ССМ (the model with complex couplings). Оценивая отношения пределов полных сечений в рамках SM- и ССМ-моделей, согласно формуле (10а), приходим к значениям, равным 2.39 и 2.42 соответственно. Электронные ССМспектры при $v_e e$ - и $\tilde{v}_e e$ -рассеяниях плоские, подобно SM-спектру при v_e-рассеянии, и практически сливаются: значения сечений, отвечающие границам сегмента 0° и 90°, при $E_a = 10 \text{ M} \Rightarrow \text{B}$ равны 1.1 и 1.2 ($v_e e$), 0.1 и 1.2 ($\tilde{v}_e e$) (вединицах $\sigma_0^{(n)}$) соответственно.

Взаимодействие недиагональных нейтральных токов, наряду с реакциями (1)–(5), описывает $v_e \rightleftharpoons v_l^-, \tilde{v}_e \rightleftharpoons \tilde{v}_l^-$ и $e^- \rightleftharpoons l^-$ -конверсии в реакциях неупругого рассеяния

$$v_e + e^- \rightleftharpoons v_l + l^-, \quad \tilde{v}_l + e^- \rightleftharpoons \tilde{v}_e + l^-, \quad (16)$$

а также

$$v_l + e^- \rightleftharpoons v_e + l^-, \quad \tilde{v}_e + e^- \rightleftharpoons \tilde{v}_l + l^-, \quad (17)$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 4 2019

на которые не накладывается аддитивный запрет.

Прямые реакции (17), описывающие взаимные конверсии неродственных (анти)нейтрино первых двух поколений

$$v_{\mu} + e^{-} \rightleftharpoons v_{e} + \mu^{-}, \quad \tilde{v}_{e} + e^{-} \rightleftharpoons \tilde{v}_{\mu} + \mu^{-}, \quad (17a)$$

рассматриваются как важный источник проверки схем сохранения лептонного заряда и получения информации о структуре заряженных токов. Описание реакций (17а) на их основе (СС-описание)

$$L_{CC} = \frac{G_{ch}}{\sqrt{2}} \overline{\mu} \gamma_{\alpha} \left(1 + h_{\mu} \gamma_{5} \right) \nu_{\mu} \overline{\nu}_{e} \gamma_{\alpha} \left(1 + h_{e} \gamma_{5} \right) e,$$

$$h_{\mu,e} = \frac{g_{A}^{(\mu,e)}}{g_{V}^{(\mu,e)}}, \quad G_{ch} = G_{F} g_{V}^{\mu} g_{V}^{e}$$
(18)

приводит к выводу, что выявление значений токовых констант возможно при их равенстве: $h_e = h_{\rm L}$ [1].

Взаимодействию недиагональных нейтральных токов

$$L_{NC} = \frac{G'_n}{\sqrt{2}} \overline{\nu}_e \gamma_\alpha \left(1 + h'_v \gamma_5 \right) \nu_\mu \overline{\mu} \gamma_\alpha \left(1 + h'_l \gamma_5 \right) e,$$

$$h'_v = \left(g_A^v \right)' / \left(g_V^v \right)', \quad h'_l = \left(g_A^l \right)' / \left(g_V^l \right)', \quad (19)$$

$$G'_n = G_F \left(g_V^l \right)' \left(g_V^v \right)'$$

отвечают предельные полные сечения реакций (17а), которые представим в виде

$$\sigma(NC) = \frac{\left|G_{n}^{'}\right|^{2} s}{6\pi} \times \left[\left(1 + \left|h_{v}^{'}\right|^{2}\right)\left(1 + \left|h_{l}^{'}\right|^{2}\right) \pm 2\operatorname{Re}h_{v}^{'}\operatorname{Re}h_{l}^{'}\right].$$
(20)

Верхний знак соответствует сечению $v_{\mu}e_{-}$, а нижний — $\tilde{v}_{e}e_{-}$ рассеяния.

Попытаться познакомиться со структурой недиагонального тока ($\overline{\mu}e$) позволяет предположение, что нейтринный ток ($\overline{\nu}_e \nu_\mu$), подобно диагональному ($\overline{\nu}_l \nu_l$), имеет (V-A)-структуру: $|h'_v| = 1$. В этом случае формула (20) принимает вид (10а), и значение константы h'_l определяется формулой

значение константы h'_l определяется формулой (11) при замене отношения пределов полных сечений $R \equiv R_d$ его аналогом R_{nd} .

Введение недиагональных нейтральных токов с одновременным рождением частиц, уничтожением античастиц и наоборот, т.е. описывающих переходы $v \rightleftharpoons \tilde{v}$ и $l \rightleftharpoons \tilde{l}$, которые запрещены как аддитивной схемой, так и сохранением лептонных чисел L_{ch} и L_v , не может реализоваться.

Рис. 1. Заряженные токи, описывающие взаимные превращения нейтрино и неродственных антинейтрино.

К нейтринно-антинейтринным конверсиям приводит наиболее экономный вариант описания лептонов, по которому существует один аддитивный лептонный заряд *l*, знаки которого для

 μ^- и e^- противоположны [5, 6] и одно четырехкомпонентное нейтрино, левые компоненты которого связаны с электронами, а правые — с мюонами [7—9]. Его обобщение на случай произвольного 2n числа заряженных лептонов, когда нейтрино связываются с *n* четырехкомпонентными дираковскими полями, проведено в [10].

Такое обобщение можно осуществить путем введения четвертого нейтрино v_4^R в составе нового поколения лептонов [11] (см. табл. 3). "Это правое нейтрино должно быть тяжелым, в противном случае оно было бы уже обнаружено" [12]. В представляемой картине описания лептонных семейств предполагаем сохранение полного лептонного числа *L*.

Таким образом обобщаем также представления "комбинированной" схемы описания лептонов [13], в рамках которой знаки лептонного заряда для ц[–] и *е*[–] противоположны, а его значения

для лептонов первых двух поколений различны по величине.

Представленные на диаграмме (см. рис. 1) заряженные токи и их эрмитово-сопряженные описывают недиагональные лептонные процессы в рамках введенной схемы. Взаимодействие токов на горизонтальных линиях приводит к взаимным переходам нейтральных и заряженных частиц в реакциях

$$v + \mu^- \rightleftharpoons \tilde{v} + e^-.$$
 (21)

Таблица 3. Описание семейств лептонов на основе единого квантового числа (лептонного заряда) *l*

Лептоны				l	Антилептоны				l
e ⁻	v_e^L	$ au^-$	v_{τ}^{L}	+1	e^+	$\tilde{\mathbf{v}}_{e}^{R}$	$ au^+$	$\tilde{v}_{\tau}^{\textit{R}}$	-1
μ^+	ν_{μ}^{R}	l_4^+	v_4^R	+2	μ_	$\tilde{\nu}^{\it L}_{\mu}$	l_4^-	\tilde{v}_4^L	-2

Токи на верхней прямой, включающие левые нейтрино и антинейтрино ($\overline{e}\nu_L$) и ($\overline{\mu}\tilde{\nu}_L$), предсказывают ($\nu_e \rightleftharpoons \tilde{\nu}_{\mu}$)-конверсии совместно с взаимными переходами заряженных лептонов

$$v_e^L + \mu^- \rightleftharpoons \tilde{v}_\mu^L + e^-,$$
 (21a)

а токи на нижней прямой с правыми (анти)нейтрино ($\bar{e}\tilde{v}_R$) и ($\bar{\mu}v_R$) – ($v_\mu \rightleftharpoons \tilde{v}_e$)-конверсии, также сопровождаемые взаимными превращениями электронов и мюонов

$$v^R_{\mu} + \mu^- \rightleftharpoons \tilde{v}^R_e + e^-.$$
 (216)

Взаимодействие токов на косой линии ($\bar{\mu}\tilde{\nu}_L$) и ($\bar{e}\tilde{\nu}_R$) описывает ($\mu - e$)-распад с испускание двух антинейтрино, обладающих разными спиральностями

$$\mu^- \to e^- + \tilde{\nu}^L_{\mu} + \tilde{\nu}^R_e.$$
(22)

Развитие нейтринной физики на базе действующих и проектируемых установок, создание детекторов нового поколения откроет путь к дальнейшему углублению представлений о механизме нейтринно-электронного взаимодействия.

Выражаю глубокую благодарность В.О. Еременко за большую помощь в оформлении этой работы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Романов Ю.И.* // Изв. РАН. Сер. физ. 2018. Т. 82. № 6. C. 842; *Romanov Yu.I.* // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. № 6. Р. 757.
- 2. Ли Ц., Ву Ц. Слабые взаимодействия. М.: Мир, 1968. С. 19.
- 3. *Ву Ц.С., Мошковский С.А.* Бета-распад. М.: Атомиздат, 1970. С. 161.
- 4. *Ramanathan R.* // Nuovo Cimento. 1977. V. A37. № 3. P. 233.
- 5. Зельдович Я.Б. // ДАН СССР. 1952. Т. 86. С. 505.
- Konopinski E., Mahmoud H. // Phys. Rev. 1953. V. 92. P. 1045.
- 7. Kawakami I. // Prog. Theor. Phys. 1958. V. 19. P. 459.
- Sokolow A.A., Kerimow B.K. // Ann. Phys. (DDR). 1958. V. 7. P. 46.
- 9. Липманов Э.М. // ЖЭТФ. 1959. Т. 37. С. 1054.
- Bilenky S.M., Pontecorvo B. // Phys. Lett. B. 1980. V. 95. P. 233.
- 11. *Романов Ю.И.* Слабое взаимодействие лептонов. Избранное. М.: МГУДТ, 2011. С. 225.
- Боум Ф., Фогель П. Физика массивных нейтрино. М.: Мир, 1990. С. 35.
- 13. Романов Ю.И. // Изв. вузов. Физика. 1971. № 12. С. 30.