УДК 539.17,539.142,539.143

ИЗМЕРЕНИЕ ПОЛНЫХ СЕЧЕНИЙ РЕАКЦИЙ ПРИ СТОЛКНОВЕНИЯХ ^{6, 8}He + ²⁸Si И ⁹Li + ²⁸Si

© 2019 г. Ю. Г. Соболев^{1, *}, Ю. Э. Пенионжкевич^{1, 2}, В. А. Маслов¹, М. А. Науменко¹, В. В. Самарин^{1, 3}, И. Сивачек^{1, 4}, С. С. Стукалов¹

¹Объединенный институт ядерных исследований, Дубна, Россия

²Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

³Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

> ⁴Институт ядерной физики Чешской академии наук, Ржеж, Чехия *E-mail: sobolev@jinr.ru Поступила в редакцию 01.10.2018 г. После доработки 15.10.2018 г. Принята к публикации 19.11.2018 г.

В работе измерены полные сечения реакций ^{6, 8}He + ²⁸Si и ⁹Li + ²⁸Si в диапазоне энергии пучка 12–39 $A \cdot M$ эВ методом трансмиссии с регистрацией мгновенного нейтронного и гамма-излучения спектрометром с шестью сцинтилляционными детекторами. Для анализа экспериментальных данных применена методика, учитывающая экспериментальные значения эффективности регистрации гамма-излучения различной множественности и кратности срабатывания детекторов спектрометра. Проведено сравнение с данными, полученными ранее в других работах. Значения полного сечения реакции ⁸He + ²⁸Si при энергии около 20 $A \cdot M$ эВ оказались близкими к значениям полного сечения реакции ⁶He + ²⁸Si. В диапазоне 12–16 $A \cdot M$ эВ полное сечение реакции ⁸He + ²⁸Si существенно выше полного сечения реакции ⁶He + ²⁸Si.

DOI: 10.1134/S0367676519040264

введение

Изучение ядерных реакций с участием нейтронно-избыточных слабосвязанных ядер позволяет получать информацию о структуре исследуемых ядер (кластеры, нейтронное гало и т.д.) [1] и ее проявлении в реакциях. Одним из критериев границ применимости и степени точности теоретических моделей является количественное согласие между величинами вычисленных и экспериментально измеренных полных сечений ядерных реакций. Результаты экспериментов по измерению полных сечений $\sigma_R(E)$ реакций ^{6, 7, 9}Li + ²⁸Si в зависимости от энергии налетающего пучка, выполненных ранее [2–4], показали, что в реакции ${}^{9}Li + {}^{28}Si$ в диапазоне энергий $E = 10-20 A \cdot M \Rightarrow B$ величина полного сечения значительно превышает величину полного сечения реакции ⁷Li + ²⁸Si [2], что не объяснялось существовавшими на тот момент теоретическими моделями. Динамическая модель, предложенная в работе [2], связывает такое превышение с изменениями при столкновении ядер пространственного распределения нейтро-

ние 4 МэВ энергии отделения нейтрона от ядра ⁹Li является промежуточным между типичным значением 8 МэВ для тяжелых ядер и значениями в диапазоне 0.5-2 МэВ, характерными для ядер с так называемым нейтронным гало, например ¹¹Li, ^{6, 8}Не. Измеренные в работах [5, 6] и рассчитанные в работе [7] полные сечения реакций с участием слабосвязанных ядер ⁶Не и ¹¹Li можно представить в виде суммы сечения реакции с ядерным кором и сечения потери внешних нейтронов, $\sigma_R(^6\text{He}) \approx \sigma_R(^4\text{He}) + \sigma_{-2n}(^6\text{He})$ и $\sigma_R(^{11}\text{Li}) \approx$ $\approx \sigma_{R}({}^{9}\text{Li}) + \sigma_{-2n}({}^{11}\text{Li})$ соответственно, причем вылет нейтронов в реакциях ¹¹Li с мишенями Au, Ni, Ве при энергии пучка 29 А · МэВ сильно анизотропен с максимумом выхода в узком интервале передних углов [8]. Это подтверждает, что при развале ядер с низкой энергией отделения нейтрона значительная часть нейтронов летит в передние углы.

нов из внешней скин-оболочки ядра ⁹Li. Значе-

Рис. 1. Схема экспериментальной установки (в разрезе) для измерения полного сечения реакции с использованием трансмиссионной методики: 1 – полиэтиленовые поглотители для снижения энергии частиц пучка; 2 – сцинтилляционный детектор AC1; 3 – позиционно-чувствительный Si-детектор; 5 – сцинтилляционный детектор AC2; 6 – мишень $\Delta E_{\rm T}$ Si-PIN-детектор; 7 – CsI(Tl) сцинтилляционные детекторы; 8 – фотоумножители; 9 – свинцовый куб; 10 – окно для вывода пучка.

Данная работа посвящена измерениям полного сечения реакции ⁸He + ²⁸Si в диапазоне энергий $E = 12-23 A \cdot M$ эB, а также реакций ⁹Li + ²⁸Si и ⁶He + ²⁸Si при энергиях около 36 и 39 $A \cdot M$ эB, соответственно. Эксперимент проводился методом трансмиссии, впервые использованным нами в работе [9]. С учетом выхода нейтронов вперед полные сечения реакций с ядрами ⁶He и ⁹Li нормировались на данные, полученные ранее в других работах, с поправками, зависящими от энергии отделения одного и двух внешних нейтронов ядер ⁶He и ⁹Li. Поправка для ядра ⁸He определена путем линейной интерполяции.

ПОСТАНОВКА ЭКСПЕРИМЕНТА

Экспериментальная установка и метод измерения полных сечений реакций с помощью регистрации мгновенного нейтронного и у-излучения описаны в [9, 10]. Эксперимент проводился на ускорителе У-400М Лаборатории ядерных реакций ОИЯИ на канале ахроматического фрагментсепаратора ACCULINNA [11]. Первичный пучок ядер ¹⁵N с энергией 49.7 *А* · МэВ фокусировался на произволяшую мишень ⁹Ве толшиной 2 мм. Вторичный пучок продуктов реакции фрагментации формировался и очищался с помощью магнитной системы фрагмент-сепаратора. На выходе последнего дипольного магнита сепаратора пучок попадал в прямолинейный участок длиной 8.5 м, где была установлена система для измерения времени пролета Т_{ТОF}, состоящая из двух тонких сцинтилляционных детекторов ΔE_{TOF1} , ΔE_{TOF2} . Непосредственно за детектором ΔE_{TOF2} по направлению пучка располагался блок сменных полиэтиленовых пластин и система детекторов активной коллимации AC1 и AC2, между которыми находились тонкие полупроводниковые детекторы ΔE и ΔE_0 .

Схема установки для измерения полных сечений реакций показана на рис. 1. Пучок проходил через полиэтиленовые пластины, служащие для снижения его энергии, и фокусировался на позиционно-чувствительный двухслойный стриповый ΛE -Si-летектор толшиной 300 мкм (летектор "16X-16Y"). Этот детектор находился в фокальной плоскости фрагмент-сепаратора и мог быть перемещен в позицию на оси пучка для настройки и контроля его параметров (интенсивность, профиль, изотопный состав). Сцинтилляционные детекторы активных коллиматоров АС1 и АС2 располагались на оси пучка таким образом, чтобы траектории частиц, пересекающие их, попадали в чувствительную область детектора-мишени $\Delta E_{\rm T}$, не касаясь его элементов крепления, и проходили через выходное окно. Стартовый ΔE_0 -Si-детектор (толщиной 380 мкм) использовался для запуска системы сбора информации для каждого события пролета частиц пучка через ΔE_0 -детектор. Информация об энергетических потерях частиц пучка в ΔE_0 -детекторе использовалась при последующем offline-анализе, например, для идентификации частиц пучка с помощью двухмерного спектра (рис. 2*a*).

Мишень ($\Delta E_{\rm T}$ -Si-PIN-детектор толщиной 243 мкм) располагалась в тонкостенной (толщиной 2 мм) вакуумно-плотной цилиндрической камере из нержавеющей стали. С внешней стороны реакционная камера была окружена шестью сцинтилляционными CsI(Tl)-детекторами γ -спектрометра. Спектрометр с реакционной камерой располагался внутри свинцового куба с толщиной стенок 5 см. Внешние поверхности куба были закрыты блоками из борсодержащего полиэтилена толщиной 10 см.

Каждый CsI(Tl)-сцинтиллятор представлял собой прямую призму с основанием в форме правильного шестиугольника с радиусом описанной окружности 5 см. Сцинтиллятор с торца был оптически соединен с фотоумножителем, а с других поверхностей был покрыт светоотражающим и светозащитным слоями. Для дополнительной защиты от низкоэнергетических фоновых у-квантов три внешние грани и основание сцинтилляторов закрывались тремя пластинами из меди, кадмия и свинца толщиной 1 мм каждая. Внутри чувствительной зоны у-спектрометра располагался только детектор $\Delta E_{\rm T}$, в то время как все другие ΔE -детекторы были окружены защитой из свинца и вынесены за эту зону, что приводило к минимальному числу фоновых срабатываний у-спектрометра.

Телесный угол, охватываемый CsI(Tl)-сцинтилляторами вокруг $\Delta E_{\rm T}$ -мишени составлял $\Omega = 4\pi\eta_0$, где $\eta_0 \approx \cos \theta_{min}$ — геометрическая эффективность регистрации для изотропного выхода регистрируемых частиц, θ_{min} — минимальный угол между осью установки и направлением вылета γ -кванта или нейтрона из центра мишени с попаданием в объем CsI(Tl)-сцинтиллятора. Для установки, представленной на рис. 1, $\theta_{min} = 30^{\circ}$ и геометрическая эффективность регистрации изотропного излучения равна $\eta_0 = 0.85$.

Каждый сеанс измерения при определенной энергии пучка проводился как с мишенью, так и без мишени. Экспериментальная информация со всех детекторов записывалась с помощью системы набора данных на накопитель для последующего offline-анализа каждого события пролета частицы пучка через стартовый ΔE_0 -детектор независимо от наличия реакции в $\Delta E_{\rm T}$ -детекторе. Для уменьшения эффекта возможного наложения импульсов в ΔE_0 - и $\Delta E_{\rm T}$ -детекторах интенсивность пучка ограничивалась значением 10³ с⁻¹. Энергия пучка менялась без значительной потери интенсивности в интервале 20-30 A · M э B с помощью магнитной системы фрагмент-сепаратора, а в интервале $7-20 A \cdot M \Rightarrow B$ — полиэтиленовыми пластинами.

Двумерный спектр $\Delta E_0 \cdot T_{\text{TOF}}$ идентификации частиц вторичного пучка представлен на рис. 2*a*. Из него видно, что изотопы ⁸Не и ¹¹Li частиц пучка образуют хорошо разделенные области, позволяющие надежно выделять для последующего offline-анализа определенную группу частиц. Детекторы АС1, АС2 использовались в качестве активных коллиматоров [12] и служили для отбора событий пролета частиц пучка в заданном телесном угле с осью в центре мишени. На рис. 26 представлен двумерный корреляционный спектр $T_{AC1} \cdot T_{AC2}$. Точками в центральной области двумерного спектра отмечены события, соответствующие сигналам с обоих детекторов АС1, АС2 в узком временном интервале, т.е. потоку I_0 частиц пучка, проходящих через оба детектора и падающих на центральную часть мишени.

Число событий реакции определялось из условий регистрации γ -кванта или нейтрона хотя бы в одном из шести детекторов спектрометра. Условие регистрации γ -кванта или нейтрона в детекторе графически представлено на рис. 2*в* контуром на двумерном амплитудно-временном спектре $E_{\rm Cs} \cdot T_{\rm Cs}$ CsI(Tl)-детектора. Нейтрон или γ -квант считались зарегистрированными CsI(Tl)детектором, если точка на спектре $E_{\rm Cs} \cdot T_{\rm Cs}$ попадала внутрь контура.

Погрешности δ_E , связанные с разбросом энергий пучка перед мишенью, определялись из ана-

Рис. 2. *а* – двумерный спектр $\Delta E_0 \cdot T_{\text{TOF}}$ вторичного пучка, состоящего из ядер ⁸Не и ¹¹Li; ΔE_0 – ионизационные потери частиц в детекторе, T_{TOF} – время пролета частиц пучка на дистанции времяпролетной базы 8.5 м; δ – двумерный спектр $T_{\text{AC1}} \cdot T_{\text{AC2}}$ отбора событий пролета частиц ⁸Не и ¹¹Li в центральную область мишени; T_{AC1} и T_{AC2} – времена прихода сигналов детекторов AC1 и AC2 относительно времени стартового ΔE_0 -детектора; *в* – типичный амплитудно-временной спектр $E_{\text{Cs}} \cdot T_{\text{Cs}}$ одного из шести CsI(Tl) сцинтилляционных детекторов спектрометра, E_{Cs} – амплитуда (каналы) анодного импульса фотоумножителя, T_{Cs} – время срабатывания (каналы) порогового дискриминатора детектора.

лиза одномерных спектров ΔE_0 и $T_{\text{ТОF}}$. Потери энергии ядер-снарядов на выходе из мишени ΔE_{T} рассчитывались с помощью программы LISE++ [13, 14]. Разброс энергетических потерь в мишени определялся выражением $\Delta_E = (E_0 - E_1)/2 \gg \delta_E$. Значение сечения приписывалось значению энергии $E_0 - \Delta_E$.

АНАЛИЗ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

Метод трансмиссии пучка, использованный в эксперименте, заключался в измерении потока I_0 частиц, падающих на мишень, и его части ΔI , соответствующей неупругим каналам реакции. Величина ΔI равна

$$\Delta I = I_0 [1 - \exp(-n\sigma_R)], \qquad (1)$$

где n — число ядер мишени на единицу поверхности. В экспериментах с тонкими мишенями при выполнении условия $\Delta I \ll I_0$ формула (1) может быть приведена к виду

$$\sigma_R = \frac{\Delta I}{I_0 n}.$$
 (2)

В идеальном случае уменьшение ΔI потока I_0 частиц, соответствующее неупругим каналам реакции, может быть измерено посредством регистрации продуктов реакции детектором, охватывающим телесный угол 4π вокруг мишени. В реальном случае эффективность регистрации зависит как от энергии у-квантов (нейтронов), так и от охватываемого телесного угла. Эффективность регистрации слабо зависит от энергии у-квантов (нейтронов) из-за достаточно большого объема используемых CsI(Tl)-сцинтилляторов [9], поэтому в данной работе учитывалось влияние только таких факторов как телесный угол (т.е. геометрическая эффективность регистрации), множественность М у-излучения, анизотропия вылета нейтронов. Поскольку в использованной установке телесный угол, перекрываемый детекторами, составлял $\Omega = 4\pi\eta_0 < 4\pi$, в действительности измерялась величина $\Delta \tilde{I} = \eta \Delta I$, где $\eta -$ поправка, учитывающая все вышеуказанные факторы. При изотропном вылете продуктов реакции $\eta = \eta_0$, при относительном избытке вылета вперед под малыми углами $\eta < \eta_0$, при избытке вылета в направлении детекторов $1 \ge \eta > \eta_0$.

Для определения фоновых показаний с пучком ядер ^{6, 8}Не и ⁹Li проводились измерения без мишени. Время облучения подбиралось таким образом, что число событий I_0 как с мишенью, так и без мишени, было примерно одинаковым.

Для определения эффективности P(M) регистрации спектрометром γ -квантов различной множественности M был проведен модельный экспе-

римент с использованием радиоактивного источника 60 Со, установленного на место мишени. В измерениях с источником 60 Со в качестве стартового детектора использовался CeBr₃-детектор в форме куба со стороной 51 мм. Он располагался на оси пучка на расстоянии 10 см от источника 60 Со и не закрывал собой CsI(Tl)-детекторы спектрометра.

Ядро ⁶⁰Со испытывает бета-распад с образованием в 98.8% случаев дочернего ядра ⁶⁰Ni в возбужденном состоянии 4⁺. Переходы из него в состояние 2⁺, а затем в состояние 0⁺ сопровождаются испусканием γ -квантов с энергиями соответственно $E_{\gamma,1} = 1173$ кэВ и $E_{\gamma,2} = 1332$ кэВ. В масштабах временно́го разрешения детекторов установки испускание двух γ -квантов происходит одновременно. Регистрируя γ -кванта с $E_{\gamma,1} = 1173$ кэВ в пике полного поглощения, мы выделяли событие испускания второго γ -кванта с $E_{\gamma,2}$. Путем объединения таких событий по два, три и т.д., моделировались события одновременного изотропного вылета двух, трех и т.д. γ -квантов $E_{\gamma,2}$.

Система набора данных установки записывала события, в которых в CeBr₂-детекторе выделялась энергия 1173 ± 10 кэВ, что в подавляющем большинстве случаев соответствовало событиям регистрации в Се Br_3 -детекторе γ -кванта с $E_{\gamma,1} = 1173$ кэBв пике полного поглощения (исключением являлись фоновые события, соответствующие пьедесталу под пиком полного поглощения в энергетическом спектре). Полное число таких событий обозначим как n_l. В каждой записи о событии имелась информация о времени T_{Cs} срабатывания и энерговыделении $E_{\rm Cs}$ γ -излучения в CsI(Tl)-детекторах спектрометра. Поскольку временные характеристики стартовых детекторов CeBr₃ и ΔE_0 (времена T_{Cs} срабатывания пороговых дискриминаторов детектора относительно стартового сигнала с детекторов CeBr₃ и ΔE_0) были близки, соответственно, и форма контуров на двумерных амплитудно-временных $E_{\rm Cs} \cdot T_{\rm Cs}$ -спектрах CsI(Tl)-детекторов (рис. 2*в*) не потребовала изменения.

Гамма-квант с $E_{\gamma,2} = 1332$ кэВ (либо вторичные фотоны, электроны и позитроны, образующиеся при его взаимодействии с веществом детектора) считался зарегистрированным в одном или нескольких CsI(Tl)-детекторах, если точка на спектре $E_{\rm Cs} \cdot T_{\rm Cs}$ попадала внутрь контура соответствующего детектора. Число *k* сработавших детекторов называют кратностью срабатывания детекторов.

Экспериментальная эффективность регистрации спектрометром ү-излучения с энергией $E_{\gamma,2}$ и множественностью M = 1 определялась по формуле

$$P(1) = \frac{N_k^{(1)}}{n_1},$$
 (3)

где $N_k^{(1)}$ — число событий, в которых было зарегистрировано срабатывание k детекторов с энерговыделением выше величины порога (150 кэВ).

Путем последовательного объединения n_1 событий формировались $n_M = n_1/M$ групп из M событий. Эти группы представляли собой новые (экспериментально смоделированные) события, в которых происходила изотропная эмиссия группы из $M = 2, 3, 4, 5 \gamma$ -квантов с энергией $E_{\gamma,2}$. Определялось число $N_k^{(M)}$ событий, в которых было зарегистрировано срабатывание k детекторов с энерговыделением выше порога. Экспериментальная эффективность регистрации спектрометром γ -излучения множественностью M определялась по формуле

$$P(M) = \frac{1}{n_M} \sum_{k=1}^M N_k^{(M)}.$$
 (4)

Полученная зависимость экспериментальной эффективности регистрации спектрометра от множественности $M \le 5 \gamma$ -излучения с $E_{\gamma,2} = 1332$ кэВ представлена на рис 3*a*. Видно, что с увеличением множественности $P(M) \rightarrow 1$; для множественности M > 5 величина эффективности P(M) > 0.96. Относительные частоты $w_M(k)$ кратности k срабатывания детекторов спектрометра при регистрации $M \gamma$ -квантов

$$w_M(k) = \frac{N_k^{(M)}}{n_M P(M)} \tag{5}$$

показаны на рис. Зб. Вероятность кратности k срабатывания детекторов спектрометра при регистрации $M \gamma$ -квантов равна $P(M)w_M(k)$.

При измерениях без мишени связь числа N'_k срабатывания k детекторов с потоком I_0 аппроксимировалось линейной зависимостью

$$N_{k}' = N_{0k}' + \beta_{k} I_{0}.$$
 (6)

Значения коэффициентов β_k и их погрешности $\delta\beta_k$ определялись первоначально с помощью линейной регрессии. Практически значения пара-

метров N'_{0k} оказались малы по модулю, поэтому в дальнейшем использовалось более простое выражение

$$N'_{k} = \beta_{k} I_{0} \tag{7}$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 4 2019

Рис. 3. *а* — эффективность *P*(*M*) регистрации спектрометром группы из *M* γ -квантов; δ — относительные частоты $w_M(k)$ кратности *k* срабатывания детекторов спектрометра при регистрации *M* γ -квантов для *M* = = 1 (\bullet), *M* = 2 (\bigcirc), *M* = 3 (\blacktriangle), *M* = 4 (\triangle), *M* = 5 (\blacksquare).

с коэффициентами β_k, найденными методом наименьших квадратов по результатам *m* измерений

$$\beta_{k} = \frac{\sum_{j=1}^{m} I_{0j} N_{kj}}{\sum_{j=1}^{m} I_{0j}^{2}}.$$
(8)

Числа N_k срабатываний k детекторов, коэффициенты β_k и их погрешности $\delta\beta_k$ для нескольких энергий E и потоков I_0 ядер ⁹Li и ⁶He при экспозициях без мишени приведены в табл. 1.

Числа N_k срабатываний k детекторов для потока I_0 ядер ⁶Не и ⁹Li при экспозиции с мишенью приведены в табл. 2. Результат измерения сечения

СОБОЛЕВ и др.

	0 / 1	1	,				
Ядро	$E, A \cdot M$ эВ	I_0	$N_1^{'}$	N'_2	N'_3	N'_4	N'_5
Ядро ⁹ Li ⁶ He ⁸ He	36.2	283729	227	41	17	6	0
		β_k	$8.0 \cdot 10^{-4}$	$1.4 \cdot 10^{-4}$	$6.0 \cdot 10^{-5}$	$2.1 \cdot 10^{-5}$	0
⁶ He	39.1	213213	191	53	19	6	3
		β_k	$9.0 \cdot 10^{-4}$	$2.5 \cdot 10^{-4}$	$8.9 \cdot 10^{-5}$	$2.8 \cdot 10^{-5}$	$1.4 \cdot 10^{-5}$
⁸ He	12.7	147126	146	20	10	0	0
	14.8	176149	168	26	3	1	2
	16.4	150745	121	30	10	2	0
	21.0	261581	209	67	15	9	3
	23.2	382646	328	72	20	13	1
		β_k	8.60 · 10 ⁻⁴	$1.97 \cdot 10^{-4}$	$5.20 \cdot 10^{-5}$	$2.69 \cdot 10^{-5}$	$5.2 \cdot 10^{-6}$
		$\delta \beta_k$	$8.2 \cdot 10^{-5}$	$5.5 \cdot 10^{-5}$	$2.0 \cdot 10^{-5}$	8.0 · 10 ⁻⁶	$7.1 \cdot 10^{-6}$

Таблица 1. Числа N'_k срабатываний k детекторов, коэффициенты β_k и их погрешности $\delta\beta_k$ для нескольких энергий E и потоков I_0 ядер ⁹Li и ^{6, 8}Не при экспозициях без мишени

Таблица 2. Числа N_k срабатываний k детекторов, эффективность регистрации η и полные сечения реакции σ_R для энергии E и потока I_0 ядер ⁹Li и ⁶He при экспозициях с мишенью Si

Ядро	$E, A \cdot M$ эВ	I_0	N_1	<i>N</i> ₂	N_3	N_4	N_5	$\eta=\eta_0$		$\eta < \eta_0$	
								η	σ _{<i>R</i>} , мб	η	σ _{<i>R</i>} , мб
⁹ Li	35.9 ± 0.3	300366	399	143	76	37	14	0.85	1761 ± 46	—	—
⁶ He	38.8 ± 0.3	244884	315	122	52	16	6	0.85	1490 ± 111	0.78 ± 0.04	1624 ± 121

реакции определялся с учетом кратности k срабатывания в следующем порядке. Пусть при реакции с вероятностью $\Gamma(M)$ испускаются M γ -квантов и/или нейтронов. Тогда вероятность регистрации k фотонов и/или нейтронов (со срабатыванием kдетекторов) в результате реакции равна

$$\sum_{M=1}^{5} \Gamma(M) P(M) w_M(k).$$
(9)

При полном числе взаимодействий $\Delta I = I_0 \sigma_R n$ расчетное число их регистраций со срабатыванием *k* детекторов составит

$$\Delta \tilde{I} \sum_{M=1}^{5} \Gamma(M) P(M) w_M(k) =$$

$$= \eta I_0 \sigma_R n \sum_{M=1}^{5} \Gamma(M) P(M) w_M(k).$$
(10)

Обозначим $N_{\gamma k}$ число зарегистрированных событий со срабатыванием k детекторов. Из условия равенства числа зарегистрированных событий

 $N_{\gamma k} - N'_{\gamma k} = N_{\gamma k} - \beta_k I_0$ их расчетному значению

$$N_{\gamma k} - \beta_k I_0 = \eta I_0 \sigma_R n \sum_{M=1}^5 \Gamma(M) P(M) w_M(k) =$$

= $\eta I_0 n \sum_{M=1}^5 \sigma_{RM} P(M) w_M(k)$ (11)

следует система линейных уравнений для неизвестных $\tilde{\sigma}_{RM} = \eta \sigma_{RM} = \eta \sigma_R \Gamma(M)$

$$\sum_{M=1}^{5} \tilde{\sigma}_{M} P(M) w_{M}(k) - \frac{N_{\gamma k} - \beta_{k} I_{0}}{I_{0} n} = 0.$$
(12)

Поскольку коэффициенты системы (12) определены с погрешностями, ее точное решение может приводить к нефизическим значениям $\tilde{\sigma}_{RM} < 0$.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 4 2019

Поэтому корректнее находить неизвестные $\tilde{\sigma}_{RM}$ из условия минимума суммы квадратов левых частей

$$F\left(\tilde{\sigma}_{R1},\ldots,\tilde{\sigma}_{R5}\right) =$$

$$= \sum_{k=1}^{5} \left[\sum_{M=1}^{5} \tilde{\sigma}_{RM} P(M) w_{M}(k) - \frac{N_{\gamma k} - \beta_{k} I_{0}}{I_{0} n}\right]^{2} \qquad (13)$$

при ограничении $\tilde{\sigma}_{RM} \ge 0$. Полное сечение реакции σ_R определяется формулами

$$\sigma_R = \frac{\tilde{\sigma}_R}{\eta}, \quad \tilde{\sigma}_R = \sum_{M=1}^{5} \tilde{\sigma}_{RM}. \tag{14}$$

Погрешности $\delta\beta_k$ коэффициентов β_k приводят к погрешности $\Delta\tilde{\sigma}_R$ величины $\tilde{\sigma}_R$. Оценка $\Delta\tilde{\sigma}_R$ может быть получена по формуле

$$\Delta \tilde{\sigma}_R = \left| \tilde{\sigma}_R^{(+)} - \tilde{\sigma}_R^{(-)} \right| / 2, \qquad (15)$$

где $\tilde{\sigma}_{R}^{(+)}$ и $\tilde{\sigma}_{R}^{(-)}$ – значения, полученные для набора параметров $\beta_{k} + \delta\beta_{k}$ и $\beta_{k} - \delta\beta_{k}$, соответственно. Для оценки относительной ε_{σ} и абсолютной $\Delta\sigma_{R}$ погрешностей полного сечения реакции были использованы выражения

$$\varepsilon_{\sigma} = \frac{\Delta \tilde{\sigma}_R}{\tilde{\sigma}_R} + \frac{\Delta \eta}{\eta}, \quad \Delta \sigma_R = \sigma_R \varepsilon_{\sigma}.$$
 (16)

Полное сечение реакции ⁹Li + ²⁸Si при энергии 35.9 *A* · МэВ, вычисленное с учетом поправки η, равной геометрической эффективности регистрации $\eta = \eta_0 = 0.85$, приведено в табл. 2 и на рис. 4*a*. Минимальное удаление полученной точки (для $\eta = \max{\{\eta\}} = \eta_0$) от сглаженной кривой, проведенной через известные экспериментальные точки, позволяет считать изотропным испускание γ -квантов и нейтронов, образующихся при реакции ⁹Li + ²⁸Si. Отметим, что найденное экспериментальное значение полного сечения реакции хорошо согласуется с результатами теоретического расчета из работы [2].

Для реакции ⁶He + ²⁸Si расчет с поправкой η , равной геометрической эффективности регистрации $\eta = \eta_0 = 0.85$, дает (в отличие от реакции ⁹Li + ²⁸Si) результат, заниженный по сравнению с результатами других работ (см. рис. 46 и табл. 2). Это может служить косвенным подтверждением анизотропного характера вылета нейтронов для реакции ⁶He + ²⁸Si. Из-за малости энергии отделения нейтрона от ядер ⁶Не (1.9 МэВ [16-18]), ⁸Не (2.5 МэВ [16-18]) повышенную вероятность вылета вперед под малыми углами могут иметь нейтроны, образующиеся при развале ядра-снаряда [8]. Использование поправки $\eta = 0.78 < \eta_0$ приводит к значению полного сечения, соответствующему точке на сглаженной кривой, построенной по известным экспериментальным данным

Рис. 4. Экспериментальные (символы) и сглаженные сплайнами (кривые) энергетические зависимости полных сечений реакций: $a - {}^{9}\text{Li} + {}^{28}\text{Si}$: • [2], • [10], \triangle [6]; $\delta - {}^{6}\text{He} + {}^{28}\text{Si}$: • [6], • [10], • [3, 15]; результаты данной работы $\Rightarrow -$ для поправки $\eta = 0.85$ (равной геометрической эффективности регистрации) и $\star -$ для $\eta = 0.78$; штрихпунктирная линия на рис. a - теоретическая кривая из работы [2]; штриховые линии на рис. $\delta -$ границы доверительного интервала для сечения с учетом погрешностей измерений.

(рис. 46). Границам доверительного интервала для сечения с учетом погрешностей измерений соответствует доверительный интервал значений поправки $\eta = 0.78 \pm 0.04$.

Значения поправки η для реакций ⁶He + ²⁸Si и ⁹Li + ²⁸Si приведены на рис. 5 в зависимости от энергии E_s отделения одного и двух внешних нейтронов от ядер ⁶He и ⁹Li. Видно, что поправка η стремится к геометрической эффективности регистрации $\eta \rightarrow \eta_0$ при $E_s \ge 1$ МэВ, и убывает $\eta < \eta_0$ при уменьшении E_s . Это позволяет полу-

Рис. 5. Зависимость поправки η для реакций ⁶He + ²⁸Si и ⁹Li + ²⁸Si от энергии $E_{\rm s}$ отделения одного (\bigcirc) и двух (\bullet) внешних нейтронов ядер ⁹Li и ⁶He. Сплошная линия — результат линейной интерполяции. Вертикальные линии соответствуют энергии отделения одного (штриховая линия) и двух (штрихпунктирная линия) нейтронов от ядра ⁸He.

чить с помощью значений энергии E_s отделения одного нейтрона (2 МэВ, [16–18]) интервальную оценку поправки $\eta = \langle \eta \rangle \pm \delta \eta$ для реакции ⁸He + ²⁸Si. С учетом энергии связи одного и двух (2.5 МэВ, [16–18]) нейтронов ядра ⁸He были получены значения $\langle \eta \rangle = 0.79$, $\delta \eta = 0.03$.

Числа N_k срабатываний k детекторов для потока I_0 ядер ⁸Не при экспозиции с мишенью приведены в табл. 3. Значения сечения для реакции ⁸Не + ²⁸Si также приведены в табл. 3. Полученные полные сечения реакции ⁸Не + ²⁸Si показаны на рис. 6 в сравнении с кривой для реакции ⁶Не + ²⁸Si, полученной сглаживанием экспериментальных данных.

Рис. 6. Экспериментальная энергетическая зависимость полного сечения реакции ⁸He + ²⁸Si: • – результаты данной работы, \triangle [6], \bigcirc [19], • [20], \Box [21]. Кривая – результаты сглаживания сплайнами экспериментальных данных для реакции ⁶He + ²⁸Si (см. рис. 4).

Видно, что значения полного сечения реакции ⁸He + ²⁸Si при энергии около $20 A \cdot M$ эB оказались близкими к значениям полного сечения реакции ⁶He + ²⁸Si. В диапазоне 12–16 $A \cdot M$ эВ полное сечение реакции ⁸He + ²⁸Si существенно выше полного сечения реакции ⁶He + ²⁸Si. Возможной причиной образования такого максимума для реакции ⁸He + ²⁸Si является влияние внешних нейтронов на энергетическую зависимость оптического потенциала. Похожий максимум наблюдался в реакции ${}^{9}\text{Li} + {}^{28}\text{Si}$, для которой была обнаружена особенность в энергетической зависимости полного сечения в виде значительного повышения сечения ("бампа") в диапазоне энергий 10-30 *А* · МэВ [10] (рис. 4а). Теоретически это было объяснено следствием увеличения плотности вероятности на-

$E, A \cdot M$ эВ	I_0	N_1	N_2	N_3	N_4	N_5	σ _{<i>R</i>} , мб
12.3 ± 0.4	119471	172	75	55	20	4	2134 ± 318
14.4 ± 0.4	66494	104	40	35	10	6	2518 ± 358
16.0 ± 0.4	256911	411	176	102	49	13	2459 ± 344
20.7 ± 0.3	361352	478	229	143	76	20	1852 ± 292
22.9 ± 0.3	302720	371	184	115	57	18	1586 ± 293
22.9 ± 0.3	346282	475	199	129	55	23	1872 ± 307

Таблица 3. Числа N_k срабатываний k детекторов и полные сечения реакции σ_R для различных энергий E и потока I_0 ядер ⁸Не при экспозициях с мишенью

хождения внешних нейтронов ядра-снаряда в области между поверхностями ядер при их сближении. В работе [10] энергетическая зависимость оптического потенциала была получена в рамках микроскопического комплексного фолдинг-потенциала.

ЗАКЛЮЧЕНИЕ

В работе измерены полные сечения реакций 6,8 He + 28 Si и 9 Li + 28 Si в диапазоне энергии пучка 12–39 $A \cdot M$ эВ методом трансмиссии с регистрацией мгновенного нейтронного и гамма-излучения. Полученные экспериментальные полные сечения реакции 8 He + 28 Si находятся в согласии с опубликованными результатами и при этом охватывают ранее неисследованный диапазон низких энергий. Обнаружено, что в относительно узком диапазоне 12–16 $A \cdot M$ эВ полное сечение реакции 8 He + 28 Si существенно выше полного сечения реакции 6 He + 28 Si.

При обработке данных применена методика, учитывающая экспериментальные значения эффективности регистрации гамма-излучения различной множественности и кратности срабатывания детекторов спектрометра. Предложенный способ измерений с регистрацией мгновенного нейтронного и гамма-излучения составным спектрометром с несколькими сцинтилляционными детекторами в сочетании с описанной методикой обработки данных расширяет возможности метода трансмиссии по измерению полного сечения реакции.

Авторы выражают благодарность научной группе установки ACCULINNA за всемерную помощь при проведении экспериментов на пучках фрагмент-сепаратора.

Работа была поддержана грантом 17-12-01170 Российского научного фонда.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Пенионжкевич Ю.Э., Калпакчиева Р.Г.* Легкие ядра у границы нейтронной стабильности. Дубна: ОИЯИ, 2016. 383 с.
- Пенионжкевич Ю.Э., Соболев Ю.Г., Самарин В.В. и др. // ЯФ. 2017. Т. 80. С. 525; Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V. et al. // Phys. Atom. Nucl. 2017. V. 80. P. 928.

- Соболев Ю.Г., Будзановский А., Бялковский Э. и др. // Изв. РАН. Сер. физ. 2005. Т. 69. С. 1603; Sobolev Yu.G., Budzanowski A., Bialkowski E. et al. // Bull. Russ. Acad. Sci.: Phys. 2005. V. 69. P. 1790.
- Лукьянов К.В., Земляная Е.В., Лукьянов В.К. и др. // Изв. РАН. Сер. физ. 2008. Т. 72. С. 382; Lukyanov K.V., Zemlyanaya E.V., Lukyanov V.K. et al. // Bull. Russ. Acad. Sci.: Phys. 2008. V. 72. P. 356.
- Tanihata I., Hirata D., Kobayashi T. et al. // Phys. Lett. B. 1992. V. 289. P. 261.
- Warner R.E., Patty R.A., Voyles P.M. et al. // Phys. Rev. C. 1996. V. 54. P. 1700.
- 7. Warner R.E. // Phys. Rev. C. 1997. V. 55. P. 298.
- 8. Anne R., Arnell S.E., Bimbot R. et al. // Phys. Lett. B. 1990. V. 250. P. 19.
- 9. Соболев Ю.Г., Иванов М.П., Пенионжкевич Ю.Э. // ПТЭ. 2012. № 6. С. 13; Sobolev Yu.G., Ivanov М.Р., Penionzhkevich Yu.E. // Instrum. Exp. Tech. 2012. V. 55. P. 618.
- Соболев Ю.Г., Пенионжкевич Ю.Э., Азнабаев Д. и др. // ЭЧАЯ. 2017. Т. 48. С. 871; Sobolev Yu.G., Penionzhkevich Yu.E., Aznabaev D. et al. // Phys. Part. Nucl. 2017. V. 48. P. 922.
- Rodin A.M., Stepantsov S.V., Bogdanov D.D. et al. // Nucl. Instrum. Methods Phys. Res. Sect. B. 2003. V. 204. P. 114.
- Соболев Ю.Г., Иванов М.П., Пенионжкевич Ю.Э. и др. // ПТЭ. 2011. № 4. С. 5; Sobolev Yu.G., Ivanov М.Р., Penionzhkevich Yu.E. et al. // Instrum. Exp. Tech. 2011. V. 54. P. 449.
- 13. LISE++ code. http://lise.nscl.msu.edu/.
- 14. *Tarasov O.B., Bazin D.* // Nucl. Instrum. Methods Phys. Res. Sect. B. 2008. V. 266. P. 4657.
- Угрюмов В.Ю., Кузнецов И.В., Бялковский Э. и др. // ЯФ. 2005. Т. 68. С. 17; Ugryumov V.Yu., Kuznetsov I.V., Bialkowski E. et al. // Phys. Atom. Nucl. 2005. V. 68. P. 16.
- 16. Загребаев В.И., Деникин А.С., Карпов А.В. и др. // Сетевая база знаний NRV по ядерной физике низких энергий. http://nrv.jinr.ru/.
- Карпов А.В., Деникин А.С., Алексеев А.П. и др. // ЯФ. 2016. Т. 79. С. 520; Karpov A.V., Denikin A.S., Alekseev A.P. et al. // Phys. Atom. Nucl. 2016. V. 79. P. 749.
- Karpov A.V., Denikin A.S., Naumenko M.A. et al. // Nucl. Instrum. Methods Phys. Res. Sect. A. 2017. V. 859. P. 112.
- Villari A.C.C., Mittig W., Plagnol E. et al. // Phys. Lett. B. 1991. V. 268. P. 345.
- Chen Li, Yan-Lin Ye, Wen-Long Zhan et al. // High Energy Phys. Nucl. Phys. 2007. V. 31. P. 52.
- Chen Li, Wen-Long Zhan, Guo-Qing Xiao et al. // High Energy Phys. Nucl. Phys. 2005. V. 29. P. 944.