УДК 524.1

ИССЛЕДОВАНИЕ ХАРАКТЕРИСТИК ФОРБУШ-ЭФФЕКТОВ, ЗАРЕГИСТРИРОВАННЫХ МЮОННЫМ ГОДОСКОПОМ УРАГАН В 2012–2017 гг.

© 2019 г. А. А. Ковыляева^{1,} *, И. И. Астапов¹, Н. С. Барбашина¹, В. В. Борог¹, А. Н. Дмитриева¹, К. Г. Компаниец¹, Ю. Н. Мишутина¹, А. А. Петрухин¹, В. В. Шутенко¹, Е. И. Яковлева¹, И. И. Яшин¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет МИФИ", Москва, Россия

> **E-mail: ААКоууlyaeva@mephi.ru* Поступила в редакцию 15.09.2018 г. После доработки 06.11.2018 г. Принята к публикации 28.01.2019 г.

Приводятся результаты анализа изменений потока мюонов космических лучей во время форбушэффектов, зарегистрированных мюонным годоскопом УРАГАН в 2012–2017 гг. и сцинтилляционным мюонным годоскопом в период 2016–2017 гг. Анализируются характеристики форбуш-эффектов за этот период. Приведены результаты сопоставления полученных характеристик вариаций потока мюонов с различными параметрами ближней гелиосферы во время форбуш-эффектов для 11-летнего цикла солнечной активности.

DOI: 10.1134/S036767651905017X

ВВЕДЕНИЕ

Временные вариации интенсивности космических лучей в месте наблюдения могут быть вызваны изменениями параметров источников. включая ускорительные процессы на Солнце и в Галактике, а также различными модуляционными эффектами при распространении космических лучей в гелиосфере, магнитосфере и атмосфере Земли. Одним из ярких примеров нерегулярных вариаций потока космических лучей являются форбуш-эффекты (ФЭ), которые выражаются в резком уменьшении интенсивности космических лучей (КЛ), обусловленном крупномасштабными возмущениями солнечного ветра [1]. В работе проведено изучение форбуш-эффектов и выявление связей между их различными параметрами и характеристиками солнечных, межпланетных и геомагнитных возмущений. Для оценки взаимосвязи солнечной активности и потока мюонов параметры форбуш-эффектов, в частности, их амплитуда, сопоставляются с наблюдаемым числом солнечных пятен, которые наблюдаются как области пониженной светимости на поверхности Солнца. Температура плазмы в центре солнечного пятна понижена до примерно 3700 К по сравнению с температурой 5700 К в окружающей фотосфере Солнца. Солнечные пятна представляют огромный интерес для исследования, поскольку являются областями самых мощных солнечных вспышек, оказывающих наиболее сильное влияние на Землю.

1. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ

Мюонный годоскоп УРАГАН (МГ УРАГАН) (55.7° N, 37.7° Е, 173 м над уровнем моря) регистрирует поток мюонов на поверхности Земли одновременно в широком интервале зенитных (0°-80°) и азимутальных (0°-360°) углов с высоким угловым разрешением (~1°). МГ УРАГАН [2] является координатно-трековым детектором, позволяющим исследовать вариации углового распределения потока мюонов, обусловленные различными атмосферными и внеатмосферными процессами. МГ УРАГАН состоит из четырех независимых супермодулей (СМ). Каждый супермодуль представляет собой сборку из восьми плоскостей стримерных трубок, продуваемых газовой смесью $Ar + CO_2 + n$ -пентан. Рабочая площадь каждого супермодуля ~11 м². Трубки размером 9 × 9 × 3500 мм заключены в пластиковые контейнеры по 8 штук. Каждая плоскость содержит 320 трубок и двухкоординатную систему алюминиевых полосок стрипов. "Х"-стрипы (320 штук) располагаются вдоль стримерных трубок с одной стороны, а "Ү"-стрипы (288 штук) – поперек с другой стороны. При прохождении заряженной частицы через внутренний объем трубки вблизи анодной проволоки образуется стример, электромагнитный сигнал от которого по стрипам поступает в регистрирующую систему.

Еще одним мюонным годоскопом, расположенным на территории НИЯУ МИФИ, является сцинтилляционный мюонный годоскоп (СцМГ) [3] – координатно-трековый мюонный детектор, который состоит из двух идентичных независимых супермодулей СМ1 и СМ2. Детектирующая система СМ СцМГ имеет модульный принцип построения и состоит из четырех двухслойных координатных плоскостей, проложенных пенопластом. Модуль является базовым элементом и представляет собой самостоятельную детектирующую систему первого уровня общей иерархической структуры мюонного годоскопа. Основным детектирующим элементом СцМГ является длинная полоска-стрип пластического сшинтиллятора $(10.6 \times 26.3 \times 3500 \text{ мм})$ на основе полистирола с добавлением 2% р-терфенила и 0.02% РОРОР. Координатная плоскость (КП) детектора состоит из двух слоев с взаимно-ортогональным расположением стрипов. Каждый слой отвечает за одну координату КП и формируется из двух базовых модулей (БМ). БМ представляет собой сборку из 64 стрипов, объединенных светоизолированным корпусом с одним мультианодным ФЭУ.

Для анализа ФЭ использовались 10-минутные данные МГ УРАГАН и СцМГ. В их скорость счета были введены поправки на барометрический и температурный эффекты.

2. РЕЗУЛЬТАТЫ АНАЛИЗА ФЭ С 2012 ПО 2017 гг.

Основными параметрами, характеризующими форбуш-эффект, являются амплитуда падения темпа счета космических лучей (A_{FD}) и время падения $T_{\rm FD}$. Исследования $\Phi\Pi$ проводились с помошью методики, специально разработанной для анализа $\Phi \Theta$ в потоке мюонов, регистрируемых в годоскопическом режиме [4]. Для анализа по данным МГ УРАГАН за период 2012-2017 гг. было отобрано 56 ФЭ с амплитудой более 0.5% и для них рассчитаны амплитуды и времена падения. Для каждого ФЭ были проанализированы параметры, характеризующие: межпланетное магнитное поле – величина вектора магнитной индукции (B, нТл) и его проекция на ось $Z(B_z, нТл)$, солнечный ветер — скорость (V, км \cdot с⁻¹), плотность (P, см⁻³) и температура (T, K), а также индекс Кр (планетарный индекс, вычисляется как среднее значение Кр-индексов, определенных на 13-ти геомагнитных обсерваториях, расположенных между 44° и 60° северной и южной геомаг-

Рис. 1. Корреляционные зависимости: a — между амплитудами ФЭ по данным МГ УРАГАН и скоростью солнечного ветра за период 2012–2017 гг.; δ — между амплитудами ФЭ по данным МГ УРАГАН и числом пятен на Солнце (квадраты); между среднегодовым числом ФЭ по данным МГ УРАГАН и числом пятен на Солнце (открытые кружки) за период 2007–2017 гг. Прямая и штриховая линии — линейные аппроксимации.

нитных широт) и *Dst*-индекс (индекс геомагнитной активности, нТл) из базы данных OMNI.

Получены корреляции между амплитудой падения $A_{\rm FD}$ и временем падения $\Phi \ni T_{\rm FD}$ и параметрами солнечного ветра, межпланетного магнитного поля, проекцией вектора магнитной индукции на ось $Z(B_z, н Tл)$. Наилучшие, хотя слабо выраженные корреляции наблюдаются между амплитудой падения $A_{\rm FD}$ и скоростью солнечного ветра V(R = 0.46,линейный фит $A_{\rm FD}^{\rm YPAГАН} = -0.039 + 0.02 \cdot V)$ (рис. 1*a*) и проекцией вектора магнитной индукции на ось $Z B_z(R = 0.23)$ и временем падения $\Phi \ni$

Рис. 2. Зависимость от времени амплитуд падения ФЭ (символы) и числа пятен (гистограмма), наблюдаемых на Солнце за 2007–2017 гг.

 $T_{\rm FD}$ и скоростью солнечного ветра V (R = 0.24). Все остальные параметры можно считать независимыми.

3. 11-ЛЕТНИЙ ЦИКЛ СОЛНЕЧНОЙ АКТИВНОСТИ

Результаты исследования характеристик ФЭ за 2007–2011 гг. по данным МГ УРАГАН были опубликованы ранее [5]. Всего за 11-летний период было отобрано 96 событий с амплитудой более 0.5%. Этот период представляет собой практически непрерывную серию измерений пространственно-угловых вариаций потока мюонов на поверхности Земли в 2007-2017 гг. Он охватывает окончание 23-го солнечного шикла в 2007-2008 гг.. начало 24 цикла солнечной активности – январь 2009 г., минимум солнечной активности в 2009 году, периоды увеличения активности в 2010-2011 гг., годы максимума солнечной активности 2012-2015 гг. и уменьшение активности 24-го цикла в 2016-2017 гг. Число солнечных пятен является надежным и доступным солнечным параметром, особенно в исследованиях модуляции космических лучей. В работе изучается зависимость между амплитудой ФЭ и солнечной активностью в период с 2007 по 2017 гг.

На рис. 2 представлена зависимость амплитуды $\Phi \Im A_{FD}$ по данным МГ УРАГАН (квадраты), по данным СМ1 (открытые кружки), СМ2 СцМГ (крестики) и числа пятен, наблюдаемых ежедневно на Солнце, от времени за период с 2007 по 2017 гг. (черная линия). Коэффициент корреляции между среднегодовым числом ФЭ по данным МГ УРАГАН и числом пятен, наблюдаемых на Солнце за 2007–2017 гг., составил R = 0.63 (линейный фит $N_{\rm FD}^{\rm yPAFAH} = 5.6 + 0.06 \cdot S_n$) (рис. 16). Коэффициент корреляции между среднегодовыми значениями амплитуды ФЭ по данным МГ УРА-ГАН и числом пятен равен R = 0.57 (линейный фит $A_{\rm FD}^{\rm yPAFAH} = 0.7 + 0.004 \cdot S_n$) (рис. 16). Корреляции хорошо выражены.

ЗАКЛЮЧЕНИЕ

Сопоставление характеристик вариаций потока мюонов с различными параметрами околоземного пространства во время $\Phi \Theta$ за 2012—2017 гг. показало, что наилучшие, хотя и слабые, корреляции наблюдаются между амплитудой падения $\Phi \Theta A_{\rm FD}$ и скоростью солнечного ветра V(R = 0.46) и значением вертикальной составляющей B_z (R = 0.23). Изучение 11-летнего цикла активности Солнца показало, что коэффициент корреляции между среднегодовым числом $\Phi \Theta$ по данным МГ УРАГАН и числом пятен, наблюдаемых на Солнце за 2007—2017 гг., составил R = 0.63. Полученные результаты указывают на взаимосвязь между появлением событий $\Phi \Theta$ и изменением солнечной активности В течение 11 лет.

Работа выполнена на уникальной научной установке "Экспериментальный комплекс НЕВОД" при поддержке Министерства науки и высшего образования РФ (Программа повышения конкурентоспособности НИЯУ МИФИ, проект 02.a03.21.0005) и Российского научного фонда (РНФ), проект № 17-17-01215 "Создание метода ранней диагностики геомагнитных бурь на основе цифровой обработки временных рядов матриц наблюдений мюонного годоскопа".

СПИСОК ЛИТЕРАТУРЫ

- 1. *Belov A.V.* // Universal Heliophys. Processes Proc. 2008. V. 4. P. 430.
- Барбашина Н.С., Кокоулин Р.П., Компаниец К.Г. и др. // Приб. и техн. эксп. 2008. № 2. С. 26; Barbashina N.S., Kokoulin R.P., Kompaniets K.G. et al. // Instrum. Exp. Tech. 2008. V. 51. № 2. Р. 180.
- Ampilogov N.V., Astapov I.I., Barbashina N.S. et al. // Phys. Proc. 2015. V. 74. P. 478.
- Барбашина Н.С., Дмитриева А.Н., Компаниец К.Г. и др. // Изв. РАН. Сер. физ. 2009. Т. 73. № 3. С. 360; Barbashina N.S., Dmitrieva A.N., Kompaniets K.G. et al. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. № 3. Р. 343.
- Barbashina N.S., Astapov I.I., Borog V.V. et al. // J. Phys. Conf. Ser. 2013. V. 409. Art. no. 012189.