УДК 524.1-352

МИНИМАЛЬНАЯ ВЕЛИЧИНА ГЕЛИОСФЕРНОГО МАГНИТНОГО ПОЛЯ В 2008–2010 гг. ПО ДАННЫМ WIND И АСЕ

© 2019 г. Н. С. Свиржевский^{1,} *, Г. А. Базилевская¹, А. К. Свиржевская¹, Ю. И. Стожков¹

¹Федеральное государственное бюджетное учреждение науки Физический институт имени П.Н. Лебедева Российской академии наук, Москва, Россия

> **E-mail: svirzhev@fian.fiandns.mipt.ru* Поступила в редакцию 15.09.2018 г. После доработки 06.11.2018 г. Принята к публикации 28.01.2019 г.

В работе приводятся оценки вклада магнитных полей от коротирующих областей взаимодействия потоков быстрого и медленного ветра в величину измеряемого гелиосферного магнитного поля (ГМП) на 1 а. е. в минимуме солнечной активности 2008–2010 гг. Рассмотрена методика, позволяющая провести такие оценки, и приводятся результаты оценок, выполненных по данным KA WIND и ACE. Вклад магнитных полей от коротирующих областей взаимодействия в полное поле в минимуме 24-го цикла солнечной активности составил примерно 10%, минимальная напряженность ГМП около Земли в 2009 г. была равна 3.54 ± 0.11 нТл. Магнитные поля коротирующих областей взаимодействия играют важную роль в модуляции галактических космических лучей (ГКЛ). Эти поля оказывают влияние на спектры флуктуаций ГМП в секторной зоне, что приводит к изменению жесткостной зависимости тензора диффузии ГКЛ и, в итоге, к изменению спектров ГКЛ в гелиосфере при энергии частиц E < 10 ГэВ.

DOI: 10.1134/S0367676519050363

введение

Гелиосферное магнитное поле (ГМП) около Земли сильно изменяется в течение каждого 11летнего солнечного цикла, однако величина поля в каждом минимуме солнечного цикла возвращается примерно к тому же низкому "базовому" ("floor") значению. Оценка величины ГМП в периоды минимумов, равная 4.6 нТл, впервые была получена в работе [1] по различным данным (включая геомагнитные данные) за 150 лет; оценивались магнитные поля за те интервалы времени, когда отсутствовали солнечные пятна ("поsunspot floor"). Позже ряд геомагнитных данных был продлен в прошлое (до 1835 г.), а для минимума 2009 г. приводилось значение B = 4.13 нТл [2]. В минимуме 2009 г. солнечная активность была крайне низкой, в результате чего возник вопрос о переоценке минимального базового уровня поля. Новое значение минимальной напряженности ГМП, равное 4.0 ± 0.3 нТл, было получено в работе [3]. Авторы работы [3] исходили из предположения, что ГМП состоит из постоянной компоненты (open flux component) и переменного во времени поля корональных выбросов массы (ВКМ). Новое значение базового минимума напряженности было получено после исключения вклада магнитных полей от ВКМ в полное магнитное поле.

В данной работе предполагается, что ГМП состоит из поля открытого магнитного потока, магнитных полей ВКМ и магнитных полей коротирующих областей взаимодействия потоков быстрого и медленного ветра. Мы предполагаем, что магнитные поля коротирующих областей взаимодействия (CIRs, Corotating Interaction Regions) образуются за пределами солнечной короны и "поверхности источника", расположенного на расстоянии 2–3 радиусов от Солнца. Магнитное поле в пределах CIR генерируется непосредственно в гелиосфере, а не выносится как вмороженное в плазму, из короны. CIRs хорошо ограничены в пространстве и во времени, их магнитные поля нетрудно исключить из экспериментальных данных. После этого можно будет определить значение минимальной напряженности ГМП без вклада CIRs.

Методика, позволяющая определить вклад магнитных полей CIRs в среднюю величину B измеряемого ГМП, основана на их связи со скоростью солнечного ветра V, температурой T и плотностью протонов n в гелиосферной плазме [4, 5]. Для разработки методики мы использовали данные по магнитному полю и по параметрам гелиосферной плазмы, полученные на КА Улисс.

619

Рис. 1. Скорость солнечного ветра *V* (тонкая линия) и напряженность ГМП *B* (жирная линия) по данным КА Улисс в январе–апреле 1993 г. Время на оси абсцисс отсчитывается в часах от начала года.

Плазма и магнитное поле на орбите КА Улисс проще, чем около Земли, и связи магнитных полей CIRs с параметрами плазмы установить легче.

СВЯЗЬ ГМП С ПАРАМЕТРАМИ ГЕЛИОСФЕРНОЙ ПЛАЗМЫ

На рис. 1 показаны напряженность ГМП В и скорость солнечного ветра V за январь-апрель 1993 г. по часовым данным КА Улисс. В это время Улисс двигался к южному полюсу Солнца и находился на расстоянии 5.07-4.77 а. е. от Солнца, гелиоширота южная 22.8°-29.8°. Как видно из рис. 1, корреляция между В и V низкая, коэффициент корреляции между этими величинами R = 0.168. Однако, несмотря на низкую величину корреляции, напряженность поля В исключительно чувствительна к вариациям скорости солнечного ветра. Мы видим, что с каждым фронтом высокоскоростного потока солнечного ветра связан пик в напряженности ГМП, и даже небольшие возрастания скорости приводят к образованию пиков в магнитном поле. Большие по величине магнитные пики на рис. 1 связаны с CIRs, продолжительность которых, как будет показано ниже, точно укладывается в интервал времени, совпадающий с продолжительностью переднего фронта потока быстрого ветра.

На рис. 2*a* по часовым данным КА Улисс показаны плотность и температура протонов, а также скорость солнечного ветра в первом по счету CIR в 1993 г. (20–22 января). Радиальная скорость CIRs в системе отсчета, связанной с Солнцем, превышает 400 км \cdot с⁻¹, а скорость КА Улисс составляет примерно 15 км \cdot с⁻¹. Поэтому КА Улисс

можно рассматривать как неподвижный объект, мимо которого проходит CIR, независимо от того, приближается ли Улисс к Солнцу или удаляется от него.

При встрече с CIR Улисс регистрирует параметры плазмы и магнитного поля на внешней (антисолнечной) стороне CIR (460-й час от начала года). При этом наблюдается быстрый и непродолжительный рост плотности протонов n, относительно небольшой рост температуры T (рис. 2a), а также возрастание напряженности магнитного поля B, показанное на рис. 2 δ . Возрастание B обеспечивается, вероятно, простым сжатием плазмы (подобно тому, как образуются сверхсильные магнитные поля при быстром сжатии катушки с током).

Затем мимо КА проходит центральная часть CIR – область взаимодействия двух объемов плазмы, магнитные поля которых связаны силовыми линиями с двумя пространственно-различными источниками поля на поверхности Солнца. Это так называемый разогретый и замедленный поток высокоскоростного солнечного ветра [6]. В области взаимодействия магнитное поле медленного ветра отрывается от источника (с образованием тангенциального разрыва). В системе отсчета, движущейся со скоростью CIR, от области взаимодействия расходятся прямая (от Солнца) и обратная (в сторону Солнца) волны. В области обратной волны (484-508 ч) и на фронте обратной волны (на внутренней, обращенной к Солнцу стороне CIR) температура плазмы сохраняется высокой, *T* = 600000-500000 К. Высокая температура плазмы обеспечивает поддержание повышенной напряженности поля В.

Рис. 2. Скорость *V* солнечного ветра, температура *T*, плотность протонов *n* и напряженность магнитного поля в CIR, зарегистрированном КА Улисс 20–22 января 1993 г.; 2a – скорость *V* – светлые квадраты, температура *T* – жирная линия, плотность протонов *n* – тонкая линия; 2b – скорость *V* – светлые квадраты, ГМП *B* (Улисс) – тонкая линия, рассчитанное магнитное поле $B_{\text{расч}}$ – жирная линия. Время на оси абсцисс отсчитывается в часах от начала года.

На 508-м ч Улисс выходит из CIR в поток быстрого невозмущенного ветра. За фронтом обратной волны плотность протонов и напряженность магнитного поля скачком падают. Температура протонов тоже резко падает до величины ~150000-120000 К и сохраняется на этом уровне в течение ~15 сут.

На рис. 26, кроме измеряемого ГМП В (Улисс), показано вычисленное по формуле $B_{\rm pacy} = B_0 + Kn\sqrt{T}$ магнитное поле. Представление ГМП в виде функции от локальных параметров плазмы — плотности *n* и температуры T — было успешно использовано для описания магнитных полей вдоль траектории КА Улисс и около Земли [4, 5]. В формулу для Врасч входит дополнительное поле B_0 , зависящее от радиального расстояния до Солнца. Определеное из эксперимента поле B_0 равно 0.2 нТл для КА Улисс на 5 а. е. и 2.0 нТл для описания ГМП около Земли в минимуме солнечной активности.

Мы показали, таким образом, что CIR ограничен скачком плотности протонов на своей внешней стороне (рис. 2a, 460-й ч) и таким же быстрым падением температуры протонов за фронтом обратной волны (рис. 26, 508-й ч). Скачок плотности с точностью до 1 часа совпадает со скачком скорости V на ~ 140 км · c⁻¹. Скорость ветра затем плавно возрастает до ~600 км · c⁻¹, после чего регистрируется второй скачок скорости, связанный с переходом КА в область быстрого ветра (около 750 км · c⁻¹) и совпадающий по времени с падением температуры протонов. Продолжительность магнитного пика, связанного с CIR, достаточно точно совпадает с интервалом времени, в тече-

ние которого скорость V изменяется от 400 до 750 км \cdot с⁻¹.

Для того чтобы исключить магнитные поля CIRs из общего массива данных, достаточно удалить данные в интервале времени от скачка плотности протонов на внешней стороне CIRs до скачка температуры протонов за фронтом обратной волны. В примере, который мы рассмотрели выше, нужно исключить данные за 48 ч, с 460 по 508 ч. Такой подход был использован для образования "no-CIRs" массивов данных по магнитному полю в 2008–2010 гг.

ДАННЫЕ АСЕ И WIND ПО ПЛАЗМЕ И ГМП В МИНИМУМЕ 24-го ЦИКЛА

Для определения базовой напряженности ГМП на 1 а. е. в минимуме солнечной активности 24-го цикла были рассмотрены часовые данные спутников ACE и WIND за 2008–2010 гг. [7]. Оба спутника находятся в лагранжевой точке L1, и данные по плазме и ГМП у них должны быть близкими по величине. Сравнение часовых данных ACE и WIND по n, T и B показало, что данные практически совпадают, случайные шумовые флуктуации на часовых данных не проявляются. Поэтому для дальнейших вычислений были выбраны массивы данных WIND с меньшим количеством пропусков.

При вычислениях напряженности ГМП часовые данные WIND за 2008—2010 гг. были разбиты на трехмесячные массивы. Для каждого массива вычислялось среднее значение напряженности $\langle B \rangle$ и среднее значение $\langle B_{\text{мин}} \rangle$ без вклада магнит-

Год	Месяц	$\langle B_{\rm MИH} \rangle$, нТл	$\langle B \rangle$, нТл
2008	янв.—мар.	3.80	4.41
	априюн.	3.81	4.24
	июлсен.	3.73	4.14
	октдек.	3.65	4.05
2009	янв.—мар.	3.67	3.92
	априюн.	3.50	3.68
	июлсен.	3.56	3.88
	октдек.	3.42	3.85
2010	янв.—мар.	4.76	4.95

Таблица 1. Напряженность ГМП в 2008–2010 гг. на 1 а.е.

ных полей от CIRs. Результаты вычислений приведены ниже в таблице. Средние за год значения $\langle B \rangle$ равны 4.21 ± 0.15 и 3.83 ± 0.11 нТл в 2008 и 2009 гг. соответственно. Средние за год значения $\langle B_{\text{мин}} \rangle$ равны 3.75 ± 0.07 и 3.54 ± 0.11 нТл в 2008 и 2009 гг. Вклад магнитных полей от CIRs в полное поле около Земли в минимуме 24-го цикла составлял примерно 10%.

ЗАКЛЮЧЕНИЕ

В работе описана методика отбора данных, которая позволяет определить напряженность ГМП без вклада магнитных полей от CIRs. Вычисленное по этой методике магнитное поле $\langle B_{\rm мин} \rangle$ на 1 а. е. в период минимума солнечной активности 24-го цикла может рассматриваться как минимальное базовое поле, определяющееся солнечным магнитным полем. Гелиосферное магнитное поле $\langle B_{\rm мин} \rangle$ на 1 а. е. без вклада магнитных полей от CIRs равно 3.54 ± 0.11 нТл в 2009 г. Вклад магнитных полей от CIRs в полное поле в минимуме 24-го цикла составлял примерно 10%.

Магнитные поля CIRs, вклад которых в величину среднего ГМП является значимым сам по себе, играют важную роль в модуляции ГКЛ. Магнитные поля CIRs изменяют спектры флуктуаций ГМП в секторной зоне, что приводит к изменению зависимости диффузии ГКЛ от жесткости частиц и, в итоге, к изменению спектра ГКЛ в гелиосфере при энергии частиц E < 10 ГэВ [8].

Авторы работ [1–3] являются сторонниками той точки зрения, что ГМП состоит из суммы полей – поля открытого магнитного потока (ореп

flux component) с поверхности источника и магнитных полей ВКМ. Гелиосферное магнитное поле, которое определяется открытым магнитным потоком и регистрируется в периоды минимумов солнечной активности, не меняется в течение солнечного цикла, а магнитные поля ВКМ просто накладываются на это поле и обеспечивают его 11-летнюю вариацию [1]. Мы рассматриваем полное ГМП вблизи гелиосферного токового слоя как сумму трех слагаемых — поля открытого магнитного потока и магнитных полей ВКМ и CIRs, поэтому в данной работе они не рассматриваются.

Мы ожидали, что $\langle B_{\text{мин}} \rangle$ будет примерно равно дополнительному полю B_0 , которое входит в выражение $B_{\text{расч}} = Kn\sqrt{T} + B_0$, но это оказалось не так. Величина дополнительного поля B_0 около Земли в минимуме 2009 г. равна 2 нТл, а минимальное значение ГМП равно 3.54 ± 0.11 нТл.

Работа выполнена при частичной поддержке РФФИ (гранты 16-02-00100_а, 17-02-00584_а, 18-02-00582_а). Авторы выражают благодарность участникам эксперимента Улисс (omniweb.gsfc. nasa.gov/Ulysses) и сотрудникам группы ОМНИ (omniweb.gsfc.nasa.gov) за экспериментальные данные, использованные в этой статье.

СПИСОК ЛИТЕРАТУРЫ

- Svalgaard L., Cliver E.W. // Astrophys. J. Lett. 2007. V. 661. № 1. L. 203.
- Svalgaard L., Cliver E.W. // J. Geophys. Res. 2010. V. 115. P. A09111.
- 3. Owens M.J., Crooker N.U., Schwadron N.A. et al. // Geophys. Res. Lett. 2008. V. 35. L. 20108.
- Svirzhevsky N.S., Bazilevskaya G.A., Svirzhevskaya A.K., Stozhkov Yu.I. // Adv. Space Res. 2015. V. 55. № 3. P. 208.
- Свиржевский Н.С., Базилевская Г.А., Свиржевская А.К., Стожков Ю.И. // Космич. исслед. 2014.
 Т. 52. № 1. С. 17; Svirzhevsky N.S., Bazilevskaya G.A., Svirzhevskaya A.K., Stozhkov Yu. // Cosmic Res. 2014.
 V. 52. № 1. Р. 15.
- Gosling G.T., Pizzo V.J. // Space Sci. Rev. 1999. V. 89. № 1–2. P. 21.
- 7. https://omniweb.gsfc.nasa.gov/.
- Калинин М.С., Базилевская Г.А., Крайнев М.Б. и др. // Геомаг. и аэрон. 2017. Т. 57. № 5. С. 592; Kalinin M.S., Bazilevskaya G.A., Krainev M.B. et al. // Geomag. Aeron. 2017. V. 57. № 5. Р. 549.