УДК 537.2

ОПРЕДЕЛЕНИЕ ТЕПЛОФИЗИЧЕСКИХ ХАРАКТЕРИСТИК СТАЛЕЙ С ПОМОЩЬЮ ФОТОМЕТРИЧЕСКОГО АНАЛИЗА СТРУКТУРНЫХ ИЗОБРАЖЕНИЙ

© 2019 г. В. А. Ермишкин¹, Н. А. Минина^{1, *}, О. К. Белоусов¹, Н. А. Палий¹

 $^{1}\Phi$ едеральное государственное бюджетное учреждение науки

Институт металлургии и материаловедения имени А.А. Байкова Российской академии наук, Москва, Россия *E-mail: minina 1951@rambler.ru

Поступила в редакцию 20.11.2018 г. После доработки 16.12.2018 г. Принята к публикации 25.02.2019 г.

Описана разработанная методика для прямого измерения коэффициентов температуропроводности на поверхностях нагретых образцов по данным фотометрического анализа излучаемой ими энергии. Разработанный метод отличается простотой и высокой воспроизводимостью результатов измерения, однако его необходимо дополнить возможностью измерений по третьей координате.

DOI: 10.1134/S0367676519060140

введение

Измерение теплофизических свойств предъявляет повышенные требования к точности, воспроизводимости и стабильности результатов совмешая их с относительно низкими затратами и высокой производительностью при их выполнении. Применение спектральных методов для получения теплофизических характеристик открывает большие возможности для удовлетворения этих требований. Излучение тел может служить практически безинерционным индикатором их энергетического состояния. Атомно-эмиссионные спектры нашли широкое применение для анализа химического состава материалов, а тепловое излучение служит основой для бесконтактного измерения температур. Однако эти примеры не исчерпывают возможности технического применения спектров отраженного и испущенного света для получения информации о физических характеристиках материалов. В частности, в авторском коллективе был разработан фотометрический анализатор структурных изображений (ФАСИ) [1, 2], который был использован для определения температуропроводности алюминиевой и медной пленочных мишеней, в которых с помощью лазерной вспышки возбуждался процесс переноса тепла [3]. В настоящей работе рассмотрено определение коэффициента температуропроводности многокомпонентной стали с помощью ФАСИ в условиях непрерывного нагрева исследуемого образца в металлографическом микроскопе Reihert.

МАТЕРИАЛ И МЕТОДИКА ЭКСПЕРИМЕНТА

В качестве материала исследования была использована сталь 02Х21Н11Г2Б, из которой были приготовлены цилиндрические образцы диаметром 6.62 мм и высотой 11.06 мм, которые непрерывно нагревали в интервале температур 20-850°С со скоростью 12-15°С/мин. Структурные изменения на торцевой поверхности образца в процессе нагрева фиксировали с помощью специальной цифровой фотонасадки с 350-кратным увеличением. Отснятые кадры были проанализированы с помощью ФАСИ. Структурные изменения обнаруживали в результате сравнения по дифференциальной схеме эталонного кадра, на котором была отснята структура поверхности образца до начала нагрева, с ее изображением в нагретом состоянии. На этих кадрах снимались спектры яркости излучения света поверхностью образца. Алгебраические операции над спектрами позволили выявить и получить количественную меру этих изменений. Для этого интервалы яркости, в которых произошли изменения, выделяются с помощью цветового окрашивания и эта окраска переносится на структурные изображения. Тем самым удается визуализировать зоны, в которых произошли изменения, и измерить величину площадей, которую они занимают, и спектральные частоты, соответствующие их яркостям. Как явствует из монографии [4] энергия излучения (U) тела связана с уровнем внутренней энергии, аккумулированной им (Q) соотношением:

$$U = AQ,\tag{1}$$

Рис. 1. Зависимость $\partial T/\partial t - f(t)$ для выбранного температурного интервала.

где: A — коэффициент, связанный с вероятностью спонтанного излучения телом с внутренней энергией Q. ФАСИ позволяет измерить значения Uпри разных температурах в относительных единицах. Но если известно значение теплоемкости при любой температуре, то из соотношения (1) можно получить значение коэффициента A в энергетических единицах. Однако для определения коэффициента температуропроводности в этом нет необходимости, так как при использовании соотношения (1) в уравнении теплопроводности коэффициент A в правой и левой частях уравнения сократится. При этом двумерное уравнение теплопроводности запишется в виде:

$$\frac{\partial U}{\partial t} = \mathbf{a} \left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} \right). \tag{2}$$

По результатам анализа кадров, отснятых при разных температурах, можно получить значения производных, входящих в уравнение (2). Далее из этого уравнения определяется коэффициент температуропроводности. Следует отметить, что он определяется для двумерного случая, так как по условиям эксперимента нельзя определить вторую производную по третьей координате.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

Данные измерений хорошо описываются уравнением: T = 56.72t = 120.77 при критерии значимости $R^2 = 0.9951$. Для определения производных в уравнении (2) был выбран температурный интервал 20–120°С. В центре кадров, отснятых в этом температурном интервале, были выделены микро фрагменты с размерами ~0.12 × 0.12 мм, сгруппированные по двум взаимноперпендикулярным направлениям в центре кадра. По своему физическому смыслу площади под спектральными кривыми

Рис. 2. Зависимости $\partial^2 U/\partial x^2 = f(x)$ (\diamond) и $\partial^2 U/\partial y^2 = f(y)$ (\Box) при $T = 70^{\circ}$ С.

являются удельными энергиями материала в соответствующих выделенных микро фрагментах. После построения зависимостей U = f(t), U = f(x) и U = f(y), продифференцировав эти зависимости требуемое число раз, получим значения производных для подстановки в уравнение (2). Для этих производных были построены соответствующие зависимости. В частности на рис. 1 показана зависимость $\partial T/\partial t - f(t)$, построенная по данным дифференцирования уравнений тренда. Для определения производных в уравнении (2) был выбран температурный интервал 20-120°С. В центре кадров, отснятых в этом температурном интервале, были выделены микро фрагменты с размерами ~ 0.12×0.12 мм, сгруппированные по двум взаимноперпендикулярным направлениям в центре кадра. По своему физическому смыслу площади под спектральными кривыми являются удельными энергиями материала в соответствующих выделенных микро фрагментах. После построения зависимостей U = f(t), U = f(x) и U = f(v). продифференцировав эти зависимости требуемое число раз, получим значения производных для подстановки в уравнение (2). Для этих производных были построены соответствующие зависимости. В частности на рис. 2 показана зависимость $\partial T/\partial t - f(t)$, построенная по данным дифференцирования уравнений тренда. Зависимости $\partial^2 U/\partial x^2$ и $\partial^2 U/\partial v^2$ были построены для всех выделенных микро фрагментов в заданном температурного интервала. На рис. 2 показан пример этих зависимостей для $T = 70^{\circ}$ С. При всех температурах в выбранном интервале температур были определены максимальные значения сумм вторых производных энергии по координатным осям и они были использованы для вычисления коэффициентов температуропроводности. По ним было получено среднее значение

этого коэффициента. Оно оказалось равным $a = 0.01254 \cdot 10^{-4} \text{ м}^2 \cdot \text{c}^{-1}$. Разброс полученных оценок коэффициента температуропроводности лежит в интервале [0.00941-0.01422] · 10⁻⁴. Следует отметить, что зависимости $\partial^2 U/\partial x^2 = f(x)$ и $\partial^2 U/\partial v^2 =$ = f(v) носят немонотонный характер. Возможной причиной такого поведения зависимостей является структурная неоднородность исследованной стали в пределах фрагментов, что может вносить заметный вклад во внутреннюю энергию материала при малых площадях микро фрагментов. По порялку величины найленные значения не отличаются от значений коэффициентов температуропроводности, приводимых в справочниках для легированных сталей, но те получены для объемных измерений.

выводы

1. Разработана методика для прямого измерения коэффициентов температуропроводности на поверхностях нагретых образцов по данным фотометрического анализа излучаемой ими энергии. 2. Разработанный метод отличается простотой и высокой воспроизводимостью результатов измерения, однако его необходимо дополнить возможностью измерений по третьей координате.

Работа выполнена по государственному заданию № 007-00129-18-00 и при финансовой поддержке РФФИ (грант № 17-08-00098а).

СПИСОК ЛИТЕРАТУРЫ

- 1. Ермишкин В.А., Мурат Д.П., Подбельский В.В. // Инф. технол. 2007. № 11. С. 65.
- 2. Ермишкин В.А., Минина Н.А., Федотова Н.Л. Способ фотометрической диагностики фазовых превращений в твердых телах по данным анализа спектров яркости отражения света от их поверхности. Патент РФ № 2387978, кл. G01N21/55, G01N25/02. 2010.
- 3. Новиков И.И., Ермишкин В.А., Кудрявцев Е.М., Минина Н.А. // Вестник Казан. технол. ун-та. 2014. Т. 17. № 22. С. 152.
- Астапенко А. Взаимодействие излучения с атомами и наночастицами. Долгопрудный: Изд-во Интеллект, 2010. 492 с.