УДК 541.49+546.762:548.736.5

НЕСКОМПЕНСИРОВАННЫЙ СПИНОВЫЙ МАГНИТНЫЙ МОМЕНТ И СВОЙСТВА КООРДИНАЦИОННОЙ СВЯЗИ *M* ← OH₂ В ИЗОСТРУКТУРНЫХ НИТРИЛО-*трис*-МЕТИЛЕНФОСФОНАТНЫХ КОМПЛЕКСАХ [*M*^{II}(H₂O)₃µ-NH(CH₂PO₃H)₃] (*M*^{II} = Cr−Zn)

© 2019 г. Н. В. Ломова^{1, *}, Ф. Ф. Чаусов¹, В. Г. Петров¹

¹Федеральное государственное бюджетное учреждение науки "Удмуртский федеральный исследовательский центр Уральского отделения Российской академии наук", Ижевск, Россия

> **E-mail: natalomkell@yandex.ru* Поступила в редакцию 20.11.2018 г. После доработки 16.12.2018 г. Принята к публикации 25.02.2019 г.

Проведен корреляционный анализ параметров координационных связей $M \leftarrow OH_2$ (магнитных моментов атомов переходных металлов, межатомных расстояний, силовых констант и энергий разрыва) в изоструктурных нитрило-*mpuc*-метиленфосфонатных комплексах переходных металлов 3*d*-ряда [$M^{II}(H_2O)_3\mu$ -NH(CH₂PO₃H)₃] ($M^{II} = Cr$ -Zn). Показано, что корреляция силовых констант с межатомными расстояниями согласуется с правилом Баджера, а энергия разрыва связи $M \leftarrow OH_2$ сильно отклоняется от эмпирической зависимости Полинга. Показано, что отклонения энергии разрыва связи $M \leftarrow OH_2$ от правила Полинга обусловлены наличием нескомпенсированной спиновой плотности на центральном атоме. Это объясняет устойчивость Fe-содержащих гетерометаллических координационных полимеров [(Fe,M)(H₂O)₃ μ -NH(CH₂PO₃H)₃], которая обусловливает высокую эффективность нитрило-*трис*-метиленфосфонатных комплексов как ингибиторов коррозии стали в водных средах.

DOI: 10.1134/S0367676519060218

введение

Установлено [1], что при взаимодействии некоторых переходных металлов с ионами железа образуются прочные Fe-содержащие гетерометаллические комплексы, которые формируют на поверхности стали коррозионно-защитный слой. Однако физико-химические закономерности, определяющие высокую устойчивость Fe-содержащих NTP-комплексов, оставались неисследованными.

Основными характеристиками химической связи являются межатомное расстояние r, энергия разрыва E и силовая константа k. Баджер [2] теоретически обосновал и экспериментально подтвердил соотношение $k(r - d_{ij})^3 = \text{const}$, где d_{ij} – константа для химической связи между атомами элементов *i*-го и *j*-го периодов Периодической системы. Полинг показал [3], что в некоторых случаях справедливо соотношение Er = const.

Описаны линейные координационные полимеры нитрило-*трис*-метиленфосфоновой кислоты N(CH₂PO₃)₃H₆ (**NTP**) с Cr(II) [4], Mn(II) [5], Fe(II) [6], Co(II) [7], Ni(II) [8] и Cu(II) [9] и Zn [10]. Все комплексы [4–10] изоструктурны и кристаллографически изоморфны (рис. 1).

В настоящей работе проведен корреляционный анализ параметров связи $M \leftarrow OH_2$ в комплексах [4–10] (межатомных расстояний, силовых констант и энергий разрыва), а также магнитных моментов центрального атома.

МЕТОДИКА ПРОВЕДЕНИЯ ИССЛЕДОВАНИЙ

Силовые константы связей $M \leftarrow OH_2$ определяли из спектров комбинационного рассеяния (микроскоп-микроспектрометр Centaur U-HR, возбуждение лазером с длиной волны 473 нм) в приближении для гармонического осциллятора.

Энергии разрыва связей $M \leftarrow OH_2$ находили из термогравиграмм (дериватограф Shimadzu DTG-60H, скорость нагрева 0.05 К · с⁻¹, атмосфера Ar) методом Хоровица–Мецгера.

РФЭ-спектры регистрировали на отечественном рентгеноэлектронном спектрометре ЭМС-3 (УдмФИЦ УрО РАН) [11] с магнитным энергоанализатором при возбуждении Al-Ка излуче-

Рис. 1. Строение и кристаллическая упаковка комплексов $[M^{II}(H_2O)_3\mu - NH(CH_2PO_3H)_3].$

нием ($hv = 1486.6 \Rightarrow B$). Магнитные моменты атомов *d*-элементов определяли по формуле $\mu = 2\mu_B [S(S+1)]^{1/2}$, где *S* – суммарный спин нескомпенсированных *d*-электронов, определяемый из соотношения $I_1 : I_2 = (S+1) : S$, I_1 и I_2 – интегральные интенсивности составляющих 3*s*-дублета *d*-элемента.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Найденные характеристики связей $M \leftarrow OH_2$ в комплексах [4–10] приведены в табл. 1.

Корреляция между межатомными расстояниями M-O(w) и силовыми константами соответствующих связей $M \leftarrow OH_2$ иллюстрируется рис. 2*a*, который показывает удовлетворительное согласие с правилом Баджера для всех соединений [4–10]. Корреляция межатомных расстояний M-O(w) и энергий разрыва соответствующих связей $M \leftarrow OH_2$ показана на рис. 26. Отклонения от эмпирического правила Полинга для комплексов Cr(II) и Cu(II), обусловленные ян– теллеровским искажением координационного полиэдра, проявляются так же, как и для корреляции с силовыми константами связей. Наиболее сильные отклонения от эмпирической зависимости Полинга наблюдаются для комплексов Fe(II) и Mn(II). Для комплексов Co и Ni отклонения выражены слабее.

Фрагменты РФЭ-спектров указанных координационных соединений Cr–Cu приведены на рис. 3. Наблюдаемые в комплексах [$M^{II}(H_2O)_3\mu$ – NH(CH₂PO₃H)₃] значения μ больше, чем в чистых металлах и сплавах Mn, Fe и Co. Это объясняется как увеличением числа неспаренных 3*d*-электронов при ионизации атома металла, так и отсутствием в неорганической полимерной цепи –M–O(4)– P(2)–O(5)– (рис. 1) *d*–*d* перекрытия электронных состояний атомов переходных металлов.

НЕСКОМПЕНСИРОВАННЫЙ СПИНОВЫЙ МАГНИТНЫЙ МОМЕНТ

				• • • <u>2</u> • • • • • • • • • • •	(2-)3		3/31	
M ^{II}	<i>r_i</i> , Å	$ ilde{\mathbf{v}}_i, \mathbf{c}\mathbf{m}^{-1}$	$k_i, \mathrm{H} \cdot \mathrm{m}^{-1}$	E_i , қДж \cdot моль $^{-1}$	$I_2: I_1$	Терм основного состояния М	μ, μ _B	Е _{расч} , кДж/моль (уравнение 4)
Cr	2.141	567	231.8	124.6	0.39	⁵ D	2.07	114.97
	2.274	444	142.1	88.9				94.45
	2.412	325	76.1	62.7				75.55
Mn	2.236	425	131.9	144.5	0.62	⁶ S	4.14	134.4
	2.216	455	151.2	144.5				137.43
	2.168	483	170.4	144.5				144.93
Fe	2.127	487	173.9	146	0.61	⁵ D	4.01	149.32
	2.152	487	173.9	146				145.21
	2.205	447	146.5	146				136.82
Co	2.159	444	146.2	109.2	0.42	⁴ <i>F</i>	2.23	114.84
	2.109	465	160.4	111.5				123.08
	2.089	501	186.1	122.7				126.49
Ni	2.102	432	138.4	107.8	0.29	³ <i>F</i>	1.50	112.18
	2.079	475	167.3	128.9				116.13
	2.037	504	188.4	142.2				123.58
Cu	2.309	332	83.0	63.3	0.20	² D	1.11	73.65
	2.049	407	124.7	85.8				114.93
	2.018	451	153.2	95.6				120.56
Zn	2.146	437	144.5	95.4		¹ S	_	80.03
	2.144	481	175.0	100.1				80.36
	2.07	532	214.1	101.6				92.88

Таблица 1. Характеристика связей $M \leftarrow OH_2$ в комплексах $[M^{II}(H_2O)_3\mu - NH(CH_2PO_3H)_3]$

Рис. 2. Корреляционные графики связи межатомного расстояния *r* и силовой константы *k* (*a*) и межатомного расстояния *r* и энергии разрыва связи *E* (δ) для связей $M \leftarrow OH_2$.

Двойная линейная регрессия энергии связи E по отношению к r^{-1} и μ дает уравнение

$$E = 751r^{-1} + 16\mu - 270 \pm 14;$$

расчетные значения *Е* приведены в правом столбце табл. 1. Коэффициент детерминации составляет 0.761, что соответствует коэффициенту корреляции 0.873. Остаточные отклонения обусловлены, в основном, влиянием эффекта Яна-Теллера в комплексах Cr(II) и Cu(II); при исключении Cr(II) и Cu(II) из выборки экспериментальных данных коэффициент детерминации возрастает

Рис. 3. Фрагменты РФЭ-спектров координационных соединений [$M^{II}(H_2O)_3\mu$ -NH(CH₂PO₃H)₃].

до 0.817, что соответствует коэффициенту корреляции 0.904.

выводы

Определены силовые константы (методом спектроскопии KP), энергии связей $M \leftarrow OH_2$ (по данным TГА) и магнитный момент атомов переходных металлов (по мультиплетному расщеплению РФЭ-спектров) в комплексах изоструктурного ряда [$M^{II}(H_2O)_3\mu$ -NH(CH₂PO₃H)₃] (M = Cr-Zn).

Показано, что корреляция силовых констант связей $M \leftarrow OH_2$ с межатомными расстояниями M-O(w) удовлетворяет известному эмпирическому правилу Баджера, а для корреляции энергии связей с межатомными расстояниями M-O(w)наблюдаются резкие отклонения.

Двойная линейная регрессия энергии связи по отношению к обратным величинам межатомных расстояний M—O(w) и атомным магнитным моментам показывает тесную взаимосвязь энергии связей $M \leftarrow$ OH₂ со спиновым магнитным моментом атомов 3d-металлов.

Наблюдаемая аномально высокая прочность связи Fe–O объясняет устойчивость Fe-содержащих гетерометаллических полимерных NTPкомплексов, которая обусловливает высокую эффективность комплексов NTP как ингибиторов коррозии сплавов железа в водных средах.

Работа выполнена в рамках государственного задания ФАНО России (№ гос. регистрации АААА-А17-117022250040-0).

СПИСОК ЛИТЕРАТУРЫ

1. Чаусов Ф.Ф., Сомов Н.В., Закирова Р.М. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 3. С. 394; *Chausov F.F., Somov N.V., Zakirova R.M. et al.* // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. № 3. Р. 365.

- 2. Badger R.M. // J. Chem. Phys. 1934. V. 2. P. 128.
- 3. Pauling L. // J. Phys. Chem. 1954. V. 58. № 8. P. 662.
- 4. Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. и др. // Координац. химия. 2015. Т. 41. № 10. С. 634; Somov N.V., Chausov F.F., Zakirova R.M. et al. // Russ. J. Coord. Chem. 2015. V. 41. No. 10. Р. 688.
- Cabeza A., Ouyang X., Sharma C.V.K. et al. // Inorg. Chem. 2002. V. 41. P. 2325.
- Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М. и др. // Кристаллография. 2015. Т. 60. № 6. С. 915; Somov N.V., Chausov F.F., Zakirova R.M. et al. // Cryst. Rep. 2015. V. 60. № 6. Р. 853.
- Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М., Федотова И.В. // Координац. химия. 2015. Т. 41. № 12. С. 729; Somov N.V., Chausov F.F., Zakirova R.M., Fedo-

tova I.V. // Russ. J. Coord. Chem. 2015. V. 41. № 12. P. 798.

- Сомов Н.В., Чаусов Ф.Ф., Закирова Р.М., Федотова И.В. // Кристаллография. 2016. Т. 61. № 2. С. 238; Somov N.V., Chausov F.F., Zakirova R.M., Fedotova I.V. // Cryst. Rep. 2016. V. 61. № 2. Р. 216.
- Сомов Н.В., Чаусов Ф.Ф. // Кристаллография. 2015. Т. 60. № 2. С. 233; Somov N.V., Chausov F.F. // Cryst. Rep. 2015. V. 60. № 2. Р. 210.
- 10. *Demadis K.D., Katarachia S.D., Koutmos M.* // Inorg. Chem. Comm. 2005. № 8. P. 254.
- Trapeznikov V.A., Shabanova I.N., Kholzakov A.V., Ponomaryov A.G. // J. Electron Spectrosc. Rel. Phenom. 2004. V. 137–140. P. 383.