УДК 537.622.4:537.622.3:537.621.4:537.623

МЕДЛЕННАЯ РЕЛАКСАЦИЯ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ В ПОЛИКРИСТАЛИЧЕСКОМ GdBaC0₂O_{5.53} выше температуры кюри И влияние высоких гидростатических давлений

© 2019 г. Т. Н. Тарасенко^{1, *}, А. С. Мазур²

¹Донецкий физико-технический институт имени А.А. Галкина, Донецк, Украина ²Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет", Санкт-Петербург, Россия *E-mail: t.n.tarasenko@mail.ru Поступила в редакцию 20.11.2018 г.

После доработки 16.12.2018 г. Принята к публикации 25.02.2019 г.

При исследовании фазового перехода ферромагнетик–парамагнетик в поликристаллическом кобальтите GdBaCo₂O_{5.53} выявлена медленно затухающая (с характеристическими временами $\tau \sim 10^3$ с) аномалия магнитной восприимчивости, которая обусловлена сохранением ближнего магнитного порядка при температурах выше температуры Кюри ($T_C = 275$ K). Установлено, что высокие гидростатические давления (до 1.48 ГПа) слабо влияют на T_C с барическим коэффициентом $dT_C/dP = 2.1$ K · ГПа⁻¹.

DOI: 10.1134/S0367676519060334

ВВЕДЕНИЕ

Соединение GdBaCo₂O₅₅ можно рассматривать в качестве типичного представителя упорядоченных кислороднодефицитных кобальтитов RBaCo₂O_{5 5}, в которых в зависимости от вида редкоземельного (РЗ) элемента, содержания кислорода и условий синтеза образцов с повышением температуры наблюдается последовательность фазовых переходов: антиферромагнетик-ферромагнетик (АФМ-ФМ), ферромагнетик-парамагнетик (ФМ-ПМ), изолятор-металл, а также изменения спинового состояния ионов кобальта. Положения ионов Co³⁺ в структуре GdBaCo₂O₅₅ в магнитном отношении неэквивалентны: магнитным моментом обладают только ионы кобальта в пирамидальном окружении. Основным магнитным состоянием является упорядоченное АФМ-состояние, которое реализуется при низких температурах. С ростом температуры возникает упорядоченное ФМ-состояние, которое существует в узкой области температур.

Ионы Co^{3+} в октаэдрическом окружении при дальнейшем повышении температуры испытывают переход из низкоспинового в высокоспиновое состояние, который является причиной фазового перехода изолятор—металл [1, 2]. При исследовании этого фазового перехода в поликристаллическом кобальтите GdBaCo₂O_{5.5} была обнаружена сверхмедленная термическая релаксация проводимости с характеристическими временами $\tau \sim 10^4$ с [3]. При

этом наблюдалась сильная зависимость формы петли гистерезиса от скорости изменения температуры. Для объяснения сложной кинетики фазового перехода I рода "изолятор—металл" был привлечен механизм спиновой блокады [4].

Двойные слоистые P3 кобальтиты и, в частности GdBaCo₂O_{5.5}, представляют большой интерес для практических применений в качестве катодов твердотельных оксидных источников питания (Solid Oxide Fuel Cells, SOFC) [5].

Несмотря на большое число работ, посвященных изучению спиновых состояний и фазовых переходов в кобальтитах $RBaCo_2O_{5+\delta}$, барические исследования являются единичными и практически отсутствуют исследования релаксационных процессов.

Работа посвящена изучению медленной релаксации магнитной восприимчивости при фазовом переходе Φ M—ПМ, а также влияния высоких давлений на температуру Кюри T_C в поликристаллических образцах двойного слоистого Gd—Ba-кобальтита.

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Образцы были изготовлены методом твердофазного синтеза на воздухе из высокочистых Gd_2O_3 , Co_3O_4 и BaCO₃. Подробности синтеза описаны в [3, 6]. Температурный фазовый переход парамаг-

Рис. 1. Температурные зависимости действительной части магнитной восприимчивости χ ' GdBaCo₂O_{5.53} в слабом переменном поле с амплитудой $h_{ac} \approx 0.1$ Э и частотой f = 1 МГц.

нетик-ферромагнетик изучали без наложения постоянного магнитного поля путем регистрации начальной магнитной восприимчивости в слабом переменном поле с амплитудой $h_{ac} \approx 0.1$ Э и частотой f = 1 МГц. Действительную часть магнитной восприимчивости χ' регистрировали по влиянию образца на частоту измерительного генератора. При надлежащем выборе рабочей частоты ≈10⁵-10⁶ Гц удается подавить вклады в восприимчивость при *T* < *T_C* от смещения доменных границ [7], в результате регистрируется пик χ' при T_C в чистом виде, т.е. восприимчивость истинного парапроцесса в окрестности Т_с. Это позволяет определять значение T_c с точностью, необходимой для изучения, например, влияния давления на данный переход.

На рис. 1 представлены результаты измерения χ' в диапазоне температур 180–420 К, охватывающем переходы АФМ–ФМ при $T_{AF} \approx 240$ К, ФМ–ПМ при $T_C = 275$ К и переход изолятор-металл при $T_{MI} \approx 355$ К. Видно, что переход при T_{AF} регистрируется в виде небольшого излома, в то время как в точке T_C наблюдается острый пик шириной $\Delta T_C \approx 6-7$ К, а при T_{MI} – несколько уширенный максимум. Таким образом, вид зависимости $\chi'(T)$ подтверждает последовательность фазовых переходов, происходящих в двойных слоистых РЗ-кобальтитах [1, 2].

При исследовании фазового перехода A Φ M – Φ M измерения $\chi'(T)$ проводили при двух значениях скорости изменения температуры: 3.4 и 0.48 К · мин⁻¹ [6]. Температурный цикл был организован следующим образом. Сначала образец охлаждали от комнатной температуры до $T \approx 180$ К и выдерживали при этой температуре 30 мин, затем линейно во времени нагревали до 320 К с за-

Рис. 2. *а* – температурные зависимости магнитной восприимчивости χ' GdBaCo₂O_{5.53} при скорости изменения температуры 3.4 К · мин⁻¹. *T_{END}* – температура верхней границы аномалии на ветви нагрева. *б* – затухание аномальной восприимчивости на ветви нагрева образца GdBaCo₂O_{5.53} при *T* = 297 К.

данной скоростью. После выдержки при 320 К в течение 30 мин осуществляли линейное понижение температуры.

Оказалось, что форма пика χ' при $T_C = 275$ К зависит от направления изменения температуры (рис. 2а). При охлаждении (т.е. при движении из парамагнитной области в магнитоупорядоченную) пик имеет обычную форму, но при нагревании (т.е. при движении из магнитоупорядоченной области в парамагнитную) на высокотемпературном крыле появляется хорошо выраженный пьедестал (рис. 2*a*), протяженность которого $(T_{END}-T_{C})$ уменьшается при снижении скорости изменения температуры. Это свидетельствует о том, что при температурах выше температуры магнитного упорядочения ионов Со³⁺ обнаружены признаки фазового перехода I рода [6]: появление гистерезиса восприимчивости, что свидетельствует о сосуществовании ФМ- и ПМ-фаз в виде ФМ-кластеров в ПМ-матрице.

Причиной формирования ФМ-кластеров является наличие пар ионов Co⁴⁺–Co³⁺, взаимодей-

Рис. 3. Влияние высокого гидростатического давления на критическое поведение магнитной восприимчивости χ' в окрестности T_C : a – семейство зависимостей $\chi'(T)$ при разных давлениях P, ГПа: 1 - 0; 2 - 0.42; 3 - 0.61; 4 - 0.84; 5 - 1.07; 6 - 1.30; 7 - 1.48; 6 - 6арическая зависимость критической температуры T_C перехода парамагнетик-ферромагнетик.

ствующих посредством двойного обмена. Существование ФМ-кластеров в АФМ-матрице при $T < T_N$ является причиной обменного смещения в GdBaCo₂O_{5+δ} [8]. Избыток кислорода ($\delta > 0.5$) в образце GdBaCo₂O_{5.52(2)} предполагает присутствие 3–4% ионов Co⁴⁺ в АФМ-матрице из трехвалентных ионов кобальта [8]. В изучаемом в данной работе образце GdBaCo₂O_{5.53} кислородный индекс $\delta = 0.53$ [6], это дает основание полагать наличие до 5% ионов Co⁴⁺ в ПМ-матрице. Обнаруженный эффект сохранения магнитного порядка при температурах выше T_C согласуется с выводами авторов работ [9, 10] о том, что малый магниторезистивный эффект и слабая аномалия теплоемкости вблизи T_C обусловлены сохранением ближнего магнитного порядка.

По-видимому, ФМ-кластеры являются весьма устойчивыми образованиями, поскольку существуют в широком температурном интервале: при $T < T_N - в$ АФМ-матрице из трехвалентных ионов кобальта [8], при $T_N < T < T_C - в$ ФМ-матрице, при $T > T_C - в$ ПМ-матрице. АФМ-упорядочение (а затем и ФМ-упорядочение) в матрице из ионов кобальта в пирамидах формируется благодаря обмену Co³⁺-Co³⁺, более слабому, по сравнению с ФМ-обменом Co⁴⁺-Co³⁺ в кластерах. С повышением температуры дальний магнитный порядок в АФМ-матрице (а затем и в ФМ-матрице) будет разрушаться быстрее, чем ближний магнитный порядок в ФМ-кластерах.

Сужение аномалии при уменьшении скорости изменения температуры может иметь место только в том случае, если в процессе повышения температуры выше T_C разрушение ближнего магнитного порядка происходит очень медленно. Чтобы проверить это предположение, мы исследовали кинетику изменения χ' при $T > T_C = 275$ К следующим образом: образец быстро (за 15 мин) нагревали от 190 до 297 К на высокотемпературном крыле, затем температуру стабилизировали и регистрировали изменение χ' во времени. Получена временная зависимость, которая хорошо аппроксимируется экспонентой с постоянной времени $\tau \approx 1.5 \cdot 10^3$ с (рис. 26) [6].

Мы полагаем, что при исследовании различных критических свойств $RBaCo_2O_{5.5}$ в окрестности T_C необходимо учитывать обнаруженную медленную релаксацию. О подобном факте зависимости магнитных свойств от времени выдержки образцов при определенной температуре говорится и в работе [8]. Низкотемпературное состояние GdBaCo₂O_{5.52(2)} не является состояние м теплового равновесия — магнитные свойства зависят от времени.

Внешнее давление может быть эффективным инструментом для изучения магнитных свойств материала. В некоторых оксидах кобальта $R_{1-x}A_xCoO_3$ индуцированный давлением температурный сдвиг T_C очень выражен [11].

Малая ширина пика $\chi'(T)$ позволила провести точные измерения влияния всестороннего сжатия на температуру магнитного упорядочения T_C . Чтобы избежать релаксационных явлений, измерения проводили в процессе охлаждения контейнера высокого давления с образцом. На рис. За представлено семейство зависимостей $\chi'(T)$ при нескольких давлениях до 1.48 ГПа, а на рис. 36 – зависимость $T_C(P)$, которая в таком диапазоне дав-

МЕДЛЕННАЯ РЕЛАКСАЦИЯ МАГНИТНОЙ ВОСПРИИМЧИВОСТИ лений является линейной. Полученное значение

барического коэффициента $dT_C/dP = 2.1 \text{ K}/\Gamma\Pi a$ близко к известному результату измерения T_C под давлением 0.8 ГПа для TbBaCo₂O_{5.5} [9]: $dT_C/dP =$ = 3.7 К/ГПа. Таким образом, эти данные свидетельствуют о слабом влиянии всестороннего сжатия RBaCo₂O_{5.5} на температуру магнитного упорядочения. Обычно в окислах переходных металлов с косвенным обменом барический коэффициент в несколько раз больше, что отличает этот класс кобальтитов от допированных соединений на основе RCoO₃.

Измерения температурных зависимостей намагниченности на монокристалле GdBaCo₂O_{5 56} (H||ab) также не выявили значительного влияния внешнего давления (до 0.8 ГПа) на магнитный переход [12].

Причиной низких значений dT_C/dP для кобальтитов $RBaCo_2O_{5+\delta}$ при всестороннем сжатии может быть следующее. За магнитное упорядочение ответственны ионы Со³⁺ в пирамидах, при этом температура Т_с пропорциональна обменному интегралу в цепочках косвенного обмена Со³⁺-О-Со³⁺ для этих ионов, который в общем случае зависит как от радиальных, так и угловых вкладов (см., например, [13]). Можно предположить, что при сжатии ионы Со³⁺ в пирамилальной координации изменяют свое положение относительно плоскости основания, вследствие чего будет происходить изменение углов связи θ . Если при этом вклады в обменный интеграл от изменения степени перекрытия оболочек и изменения углов связей имеют разные знаки, то в результате в эксперименте наблюдается разностный эффект: происходит частичное погашение вкладов, которое приводит к низкому значению dT_C/dP .

ЗАКЛЮЧЕНИЕ

Исследована медленная термическая релаксация действительной части магнитной восприимчивости $\chi'(T)$ в GdBaCo₂O_{5.53}. При температурах выше температуры Кюри магнитного упорядочения ионов Co^{3+} ($T_C = 275$ K) обнаружены признаки фазового перехода I рода: сосуществование ФМ- и ПМ-фаз в виде ФМ-кластеров в ПМ-матрице. Медленные релаксационные процессы в GdBaCo₂O_{5.53}, проявляющиеся при фазовом переходе ФМ-ПМ, вызваны сохранением ближнего магнитного порядка (Φ M-кластеров) при $T > T_C$.

При исследовании различных критических свойств $RBaCo_2O_{5.5}$ в окрестности T_C необходимо учитывать обнаруженную медленную релаксацию. Различия в экспериментальных данных,

полученных в работах разных авторов при изучении спиновых состояний, структурных и транспортных свойств двойных слоистых РЗ-кобальтитов, могут объясняться недостаточной выдержкой образцов при определенных температурах, поскольку образцы не успевают достичь термодинамически устойчивого состояния.

Исследования $\chi'(T)$ при высоких гидростатических давлениях свидетельствуют о том, что всестороннее сжатие слабо влияет на температуру магнитного упорядочения GdBaCo₂O_{5.53} с малым барическим коэффициентом $dT_C/dP = 2.1 \text{ K}/\Gamma\Pi a$.

Возможной причиной низкого значения dT_C/dP в двойных слоистых кобальтитах RBaCo₂O₅₅ является наблюдаемый разностный эффект. Температура T_{C} пропорциональна обменному интегралу, вклады в который для ионов в пирамидах от изменения степени перекрытия оболочек и от изменения углов связей имеют разные знаки, поэтому может происходить взаимное частичное погашение вкладов в обменный интеграл в цепочках косвенного обмена $Co^{3+}-O-Co^{3+}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Taskin A.A., Lavrov A.N., Ando Y. // Phys. Rev. B. 2005. V. 71. № 13. Art. № 134414.
- 2. Frontera C., Garcia-Munoz J.L., Llobet A., Aranda M.A.G. // Phys. Rev. B. 2002. V. 65. № 18. Art. № 180405.
- 3. Тарасенко Т.Н. // Изв. РАН. Сер. физ. 2016. Т. 80. № 11. C. 1513.
- 4. Maignan A., Caignaert V., Raveau B. et al. // Phys. Rev. Lett. 2004. V. 93. № 2. Art. № 026401.
- 5. Chroneos A., Yildiz B., Tarancon A. et al. // Energy Environ. Sci. 2011. V. 4. P. 2774.
- 6. Дорошев В.Д., Бородин В.А., Пашкевич Ю.Г. и др. // Физ. тех. выс. давл. 2005. Т. 15. № 2. С. 21.
- 7. Morishita T., Tsushima K. // Phys. Rev. B. 1981. V. 24. № 1. P. 341.
- 8. Солин Н.И., Наумов С.В., Телегин С.В., Королев А.В. // ЖЭТФ. 2017. Т. 152. № 6. С. 1286; Solin N.I., Naumov S.V., Telegin S.V., Korolev A.V. // JETP. 2017. V. 125. № 6. P. 1096.
- 9. Троянчук И.О., Чобот А.Н., Халявин Д.Д. и др. // ЖЭТФ. 2002. Т. 122. № 4. С. 863; Troyanchuk I.O., Chobot A.N., Khalyavin D.D. et al. // JETP. V. 95. № 4. P. 748.
- 10. Kasper N.V., Troyanchuk I.O., Khalyavin D.D. et al. // Phys. Stat. Sol. B. 1999. V. 215. № 1. P. 697.
- 11. Fita I., Szymczak R., Puzniak R., Troyanchuk I.O. et al. // Phys. Rev. B. 2005. V. 71. № 21. Art. № 214404.
- 12. Liao D., Lees M.R., Balakrishnan G., McK Paul D. // J. Phys. Conf. Ser. 2010. V. 200. Art. № 012104.
- 13. Boekema C., Van der Woude F., Sawatzky G.A. // Int. J. Magn. 1972. V. 3. P. 341.