УДК 539.1.047

ИССЛЕДОВАНИЕ ПОТОКА ВТОРИЧНЫХ ЧАСТИЦ МЕДИЦИНСКОГО УСКОРИТЕЛЯ ЭЛЕКТРОНОВ¹

© 2019 г. М. В. Желтоножская¹, Е. Н. Лыкова^{1, *}, А. П. Черняев¹, В. Н. Яценко²

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия

²Федеральное государственное бюджетное учреждение "Государственный научный центр Российской Федерации –

Федеральный медицинский биофизический центр имени А.И. Бурназяна"

Федерального медико-биологического агентства России, лаборатория радиометрических

и спектрометрических исследований человека и окружающей среды, Москва, Россия

**E-mail: iv-kate@yandex.ru* Поступила в редакцию 01.10.2018 г. После доработки 15.10.2018 г. Принята к публикации 19.11.2018 г.

Исследованы потоки вторичных нейтронов при использовании медицинского ускорителя электронов с энергией 20 МэВ, возникающие на конструкционных материалах самого ускорителя и в процедурных помещениях. Исследования потоков вторичных нейтронов проводились с использованием активационных методов на основе (γ ,n)- и (n, γ)-реакций на детектирующей мишени естественного тантала ¹⁸¹Та. Облученные мишени тантала исследовались с помощью спектрометра с детектором из сверхчистого германия большого объема. Распределение нейтронов по энергии было получено с помощью спектрометра-дозиметра с органическим сцинтиллятором. Установлено, что поток нейтронов составил 7% от потока тормозных гамма-квантов.

DOI: 10.1134/S0367676519040306

введение

Развитие современных методов лечения онкологических заболеваний привело к широкому распространению и внедрению в лечебных онкологических учреждениях большого числа линейных ускорителей — высокотехнологичных установок лучевой терапии. Многие годы в радиационной онкологии использовались ускорители с энергиями до 6-8 МэВ. Эти энергии ниже порогов фотонейтронных реакций на подавляющем числе элементов, применяемых при конструировании ускорителей, других приборов, строений и т.д. Поэтому вопрос о роли вторичных нейтронов при формировании поглощенной дозы не обсуждался. Однако в последнее время наряду с действующими ускорителями в медицине стали применять и ускорители с более высокими энергиями до 20 МэВ. В этой связи стала актуальной задача исследования потоков нейтронов, которые могут возникать в результате фотонейтронных реакций.

Высокоэнергетические линейные ускорители электронов для лечения пациентов, работающие на энергиях выше 8 МэВ, создают потоки вторичных нейтронов при взаимодействии тормозных фотонов с элементами ускорителя и помещения. Нейтроны в большей степени образуются в головке ускорителя (которая включает в себя мишень, коллиматоры, сглаживающий фильтр и т.д.), в процедурном кабинете, и непосредственно в теле пациента.

Для всех ядер тяжелее кислорода порог фотонейтронных реакций лежит в диапазоне от 6 до 18 МэВ. Большая часть нейтронов образуется в реакциях (γ , *n*) и (*n*, γ). Другими возможными каналами являются реакции (γ , *pn*) и (γ , αn), однако для всех ядер кроме ${}_{3}^{6}$ Li, ${}_{5}^{10}$ B и ${}_{7}^{14}$ N сечения этих реакций невелики.

Одним из основных элементов конструкции головки ускорителя, как правило, является вольфрам. В первую очередь из него изготовлена тормозная мишень линейного медицинского ускорителя.

Тормозная мишень, должна иметь высокий атомный номер (поскольку сечение образования тормозных фотонов пропорционально квадрату заряда мишени), высокую температуру плавле-

¹ Статья подготовлена по материалам доклада, представленного на 68-ой Международной конференции по ядерной спектроскопии и структуре атомного ядра "Фундаментальные проблемы ядерной физики, атомной энергетики и ядерных технологий" (ЯДРО-2018).

Содержание изотопа, %	Реакция	Пороговая энергия, МэВ	Максимум сечения, мб
¹⁸⁶ ₇₄ W (28.60)	$^{186}_{74}$ W(γ , <i>n</i>) $^{185}_{74}$ W	7.19	~400
	$^{186}_{74}$ W(γ ,2 n) $^{184}_{74}$ W	12.95	~200
$^{184}_{74}$ W (30.70)	$^{184}_{74}$ W(γ , <i>n</i>) $^{183}_{74}$ W	7.41	~400
	$^{184}_{74}$ W(γ ,2 n) $^{182}_{74}$ W	13.60	~200
$_{74}^{183}$ W (14.28)	$^{183}_{74}$ W(γ , <i>n</i>) $^{182}_{74}$ W	6.19	~450
	$^{183}_{74}$ W(γ ,2 n) $^{181}_{74}$ W	14.26	~150
$_{74}^{182}$ W (26.30)	$^{182}_{74}$ W(γ , <i>n</i>) $^{181}_{74}$ W	8.07	~400
	$^{182}_{74}$ W(γ ,2 n) $^{180}_{74}$ W	14.75	~200
$^{180}_{74}$ W (0.12)	$^{180}_{74}$ W(γ , <i>n</i>) $^{179}_{74}$ W	8.41	~400
	$^{180}_{74}$ W(γ ,2 n) $^{178}_{74}$ W	15.35	~100

Таблица 1. Основные характеристики фотонейтронных реакций на вольфраме

ния и, желательно, высокую теплопроводность. Этим условиям хорошо удовлетворяет вольфрам, который обычно и используют в качестве тормозной мишени. В коллиматорах вольфрам используют в качестве защиты от излучения фотонов. Естественный вольфрам включает в себя несколько изотопов. Они имеют небольшие значения порогов фотонейтронных реакций и достаточно большие сечения, как видно из таблицы.

Вещества с большим атомным номером Z, в частности вольфрам, имеют низкое сечение поглощения возникающих в нем вторичных нейтронов [1–5]. Эти нейтроны не экранируются коллиматором линейного ускорителя и достигают пациента, внося дополнительный вклад в дозу, который как правило, не учитывается при планировании радиотерапевтического лечения. Изза высокой радиобиологической эффективности нейтронов, вклад потока вторичных нейтронов в общий поток ионизирующего излучения даже на уровне нескольких процентов существенно увеличивает дозу, получаемую пациентом.

На проблемы учета вклада вторичных частиц (фотонов, электронов, нейтронов и др.) обратили внимание еще в конце 90-х—начале 2000-х гг. Было проведено много исследований относительно роли фотоядерных реакций в формировании дозы, а также реакций на пучках протонов и ионов [6–13].

В последние годы появилось большое количество зарубежных исследований, посвященных проблемам недоучета вклада дозы от вторичных нейтронов в общую дозу, получаемую пациентом при лучевой терапии [1–5, 14, 15]. Проведенные к настоящему времени исследования не создают полной картины о роли вторичных нейтронов в формировании общей дозы, а также о влиянии максимальной энергии ускорителя, срока его эксплуатации на величину потоков вторичных нейтронов. Несмотря на то, что ускорители с энергией выше 6 МэВ активно используются в лучевой терапии, такие исследования в нашей стране проводятся впервые.

Необходимо отметить, что основным требованием к проведению лучевой терапии и к радиационной защите пациентов является максимально возможное снижение дозы в нормальных тканях и органах, окружающих объект лечения. Поэтому исследования дозы от вторичных нейтронов при работе линейного медицинского ускорителя и оценка возможного влияния этого фактора на рецидив злокачественных новообразований является актуальной и важной с практической точки зрения задачей.

ПРИБОРЫ И МЕТОДЫ ЭКСПЕРИМЕНТА

В настоящей работе исследовались потоки вторичных нейтронов, возникающие при работе линейного медицинского ускорителя Varian Trilоду. Этот ускоритель может работать в двух режимах: с энергией тормозных гамма-квантов 6 и 20 МэВ с мощностью дозы от 1 до 6 Гр. Он оснащен встроенным 120-лепестковым коллиматором

Рис. 1. Схематический вид помещения для проведения радиотерапии с ускорителем VarianTrilogy.

для формирования полей размерами от 0.5×0.5 см до 40×40 см.

Линейный медицинский ускоритель работает в импульсном режиме с высокой плотностью потока частиц в поле излучения (по разным оценкам ~ 10^{12} – 10^{14} частиц · см⁻² · с⁻¹ [16]). Поэтому использование прямых спектрометрических методов для измерения потока тормозных гамма-квантов и нейтронов крайне затруднено. Для решения этой задачи мы использовали активационный метод регистрации излучения. Регистрация тормозных гамма-квантов и нейтронов проводилась с использованием (γ , n)- и (n, γ)-реакций. В качестве детектирующей мишени использовался естественный тантал ¹⁸¹Та.

При облучении танталовых мишеней линейный ускоритель работал при максимальной энергии тормозного излучения 20 МэВ, был ориентирован вертикально вниз на пол с углом поворота гантри и коллиматора равным 0°. Использовалась максимальная установленная мощность дозы равная 6 Гр · мин⁻¹. На ложе был установлен полистереновый пластинчатый твердотельный фантом (RW3) для имитации тела пациента. Размеры фантома составляли 40 × 40 × 10 см³. Стандартный фантом RW3 считается водно-эквивалентным в диапазонах энергий 1.17–1.33 МэВ изотопа ⁶⁰Со, а также до 25 МэВ для фотонов и электронов с энергиями 4–25 МэВ [17].

Танталовые фольги, нарезанные в виде кружков диаметром 24 мм и толщиной 10 мкм, помещались в фантом на глубину 5 см на расстоянии 95 см от источника до поверхности фантома. Время облучения мишеней из танталовой фольги составляло 8 мин 50 с. Принципиальная схема эксперимента представлена на рис. 1 и 2.

Рис. 2. Принципиальная схема облучения.

После облучения активность танталовых фольг измерялась на полупроводниковом спектрометре Canberra с детектором из сверхчистого германия большого объема с энергетическим разрешением 1.8 кэВ по гамма-линии 1332 кэВ ⁶⁰Со.

Данные об энергетическом распределении нейтронов в помещении во время работы медицинского ускорителя были получены с помощью спектрометра-дозиметра нейтронного и γ -излучения SDMF-1608PRO.DB² с органическим сцинтиллятором. В связи с высокой плотностью потока гамма-квантов и нейтронов измерения проводились при размере радиационного поля 5 × 5 см² с минимально возможной мощностью дозы 1 Гр · мин⁻¹ около внутренней стены защитного лабиринта на расстоянии 3 м от мишени (рис. 1).

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Известно, что при облучении детектирующей мишени потоком бомбардирующих частиц скорость образования ядер dN^*/dt радиоактивного изотопа определяется двумя процессами: накоплением ядер в результате ядерной реакции $\Phi\sigma N$ и уменьшением их количества при их радиоактивном распаде λN^* :

$$dN */dt = \Phi \sigma N - \lambda N^*, \qquad (1)$$

² SDMF-1608PRO.DB – Спектрометр-дозиметр нейтронного и гамма излучения предназначен для измерения энергетического распределения плотности потока нейтронов и гамма-квантов в реальном времени. Он действует на основе органического сцинтиллятора с фотоэлектронным умножителем и использует специальные фильтрующие алгоритмы математической обработки поступающих сигналов.

Рис. 3. Общий вид спектра облученной мишени.

где N — число атомов активирующегося изотопа мишени; N^* — число образующихся радиоактивных ядер; Φ — плотность потока бомбардирующих частиц, частица · см⁻² · с⁻¹; λ — постоянная радиоактивного распада, с⁻¹; σ — сечение реакции, см².

Таким образом, при бомбардировке естественного тантала ¹⁸¹Та тормозными гамма-квантами в результате (γ , *n*)-реакции образуется ¹⁸⁰Та:

$$A\left(^{180}\mathrm{Ta}\right) = N \frac{\left(1 - e^{-\lambda_{1}t}\right)}{\lambda_{1}} \int_{E_{\mathrm{nopor}}}^{E_{\gamma}^{max}} \sigma_{\gamma,n}(E_{\gamma}) \Phi_{\gamma}(E_{\gamma}) dE_{\gamma}, \quad (2)$$

где $A(^{180}\text{Ta})$ — активность ¹⁸⁰Ta в облученной мишени, N — число атомов естественного тантала в мишени, $\sigma_{\gamma, n}(E_{\gamma})$ — энергетическая зависимость сечения (γ, n)-реакции, $\Phi_{\gamma}(E_{\gamma})$ — энергетическая зависимость плотности потока γ -квантов, λ_1 постоянная радиоактивного распада ¹⁸⁰Ta, *t* — время облучения мишени.

При взаимодействии естественного тантала 181 Та с потоком нейтронов в результате (n, γ)-реакции образуется 182 Та, активность которого описывается выражением:

$$A\left({}^{182}\mathrm{Ta}\right) = N \frac{\left(1 - e^{-\lambda_2 t}\right)}{\lambda_2} \int_{0}^{E_n^{max}} \sigma_{n,\gamma}(E_n) \Phi_n(E_n) dE_n, \quad (3)$$

где $A(^{182}\text{Ta})$ — активность ¹⁸²Та в облученной мишени, N — число атомов естественного тантала в мишени, $\sigma_{n,\gamma}$ — сечение (n, γ) -реакции, $\Phi_n(E_n)$ плотность потока нейтронов, λ_2 — постоянная радиоактивного распада ¹⁸²Та, t — время облучения мишени.

После облучения мишени тантала измерялись на полупроводниковом спектрометре. Общий вид полученного спектра облученной мишени приведен на рис. 3.

Рис. 4. Тормозное распределение гамма-квантов с максимальной энергией 20 МэВ линейного медицинского ускорителя Varian Trilogy, смоделированное с помощью программы Geant4.

В измеренных спектрах надежно выделялись гамма-кванты радионуклида ¹⁸⁰Та с периодом полураспада $T_{1/2} = 8.15$ ч, образующиеся в реакции ¹⁸¹Та(γ , n)¹⁸⁰Та и радионуклида ¹⁸²Та с периодом полураспада $T_{1/2} = 115$ дней, образующихся в реакции ¹⁸¹Та $(n, \gamma)^{182}$ Та. Активность ¹⁸⁰Та составила -6040 ± 302 Бк. Активность ¹⁸²Та составила 12.60 ± ± 0.63 Бк. Для оценки потоков тормозных гаммаквантов и нейтронов (уравнения (2) и (3)) необходимо знать выход реакций (γ , *n*) и (*n*, γ). Выход (γ, n) -реакции определить достаточно легко, так как данные о зависимости сечения реакции от энергии гамма-квантов измерены с хорошей точностью [18]. Для этого необходимо проинтегрировать распределение $\sigma_{\gamma, n}$ по энергии с тормозным распределением гамма-квантов (рис. 4). В результате у нас получилось, что выход (γ , *n*)-реакции равен 28 мб для тормозных гамма-квантов с граничной энергией 20 МэВ.

Использование спектрометра-дозиметра нейтронного и γ-излучения SDMF-1608PRO позволило измерить энергетическое распределение плотности потока вторичных нейтронов в диапазоне энергий нейтронов 0.1–15 МэВ и гаммаквантов в диапазоне энергий 0.08–6.5 МэВ в смешанном потоке гамма-квантов и нейтронов. Полученные спектры приведены на рис. 5.

На гамма-спектре (рис. 5*a*) отчетливо наблюдается пик в области 2.2 МэВ ((n, γ)-реакция на водороде), что также свидетельствует о наличии в помещении нейтронов.

В полученном спектре нейтронов мы наблюдаем резонансы в области энергий от 0.2 до 1.5 МэВ

Рис. 5. Спектры, полученные в помещении при работе медицинского ускорителя с помощью спектрометра-дозиметра SDMF-1608PRO.DB (a – спектр гамма-квантов, δ – спектр нейтронов).

Рис. 6. Сечения¹⁸¹Та (n, γ) -реакции (значения из международных библиотек эксперим. ядерных данных ENDF/B-VII.1, JEFF-3.2, JENDL-4.0) [25].

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 7 2019

(рис. 56). Исходя из полученного распределения нейтронов по энергии, данных о сечениях (n, γ) реакций на тантале из [19] (рис. 6) и предполагая, что относительная интенсивность резонансов близка к относительной интенсивности нейтронов в резонансах после вылета из экранирующих материалов, мы оценили интегральный выход (n, γ) -реакции. Он оказался равным 250 мб.

Для оценки вклада тепловых нейтронов в общий поток нейтронов были проведены эксперименты по облучению сборки фольг "тантал—кадмий—тантал—кадмий" при тех же условиях работы ускорителя в течение 65 мин. Облученные мишени тантала исследовались на полупроводниковом спектрометре с детектором из сверхчистого германия. Активность ¹⁸²Та из мишени между кадмиевыми фольгами составила 5.42 ± 0.27 Бк, а активность ¹⁸²Та из мишени перед кадмиевой фольгой— 6.13 ± 0.31 Бк. Активность ¹⁸⁰Та в обеих мишенях с погрешностью 1% оказалась равной 2190 Бк.

С учетом зависимости сечения нейтронов в эпитепловой области $\sigma_n \sim 1/V$, где *V* – скорость нейтронов, мы оценили, что общий вклад тепловых и эпитепловых нейтронов не превышает 0.3–0.4%.

Решив уравнения (2) и (3), мы получили, что поток нейтронов на мишени тантала составляет 7% при работе ускорителя с максимальной энергией тормозных гамма-квантов 20 МэВ.

ЗАКЛЮЧЕНИЕ

В работе исследовались потоки вторичных нейтронов при работе линейного медицинского ускорителя Varian Trilogy. В результате было получено, что поток нейтронов на мишени тантала составляет 7% от потока тормозных гамма-квантов при работе ускорителя с энергией тормозного излучения 20 МэВ.

Важно отметить, что с учетом коэффициента относительной биологической эффективности (ОБЭ) нейтронного излучения для нейтронов с энергиями 0.1–200 кэВ, равного 10, по сравнению коэффициентом ОБЭ для гамма-квантов (равного 1), даже в предварительных исследованиях наблюдается существенный недоучет вклада излучения вторичных нейтронов в общую дозу, получаемую пациентом при лучевой терапии тормозными гамма-квантами с энергией 20 МэВ.

СПИСОК ЛИТЕРАТУРЫ

 Carrillo H.R., Almaraz B.H., Dávila V.M., Hernández A.O. // J. Radioanal. Nucl. Chem. 2010. V. 283. P. 261.

- Zanini A., Durisi E., Fasolo F. et al. // Phys. Med. Biol. 2004. V. 49. P. 571.
- 3. *Pena J., Franco L., Gómez F. et al.* // Phys. Med. Biol. 2005. № 50. P. 5921.
- 4. *Seltzer S.M.* An assessment of the role of charged seconderies from nonelastic nuclear interaction by therapy proton beam in water. National Inst. of Standards and Tehn. Techn. Rep. № NISTIR 5221. 1993.
- Schimmerling W., Rapkin M., Wong M., Howard J. // Med. Phys. 1986. V. 13. P. 217.
- 6. Варзарь С.М., Тултаев А.В., Черняев А.П. // Мед. физ. 2001. № 9. С. 58.
- Satherberg A., Johansson L. // Med. Phys. 1998. V. 25. P. 683.
- Allen P.D., Chaudhri M.A. // Med. Phys. 1982. V. 9. P. 904.
- Spurny F., Johansson L., Satherberg A. et al. // Phys. Med. Biol. 1996. V. 41. P. 2643.
- Ahnesjo A., Weber L., Nilsson P. // Med. Phys. 1995.
 V. 22. P. 1711.

- Gottschalk B., Platais R., Paganetti H. // Med. Phys. 1999. V. 26. P. 2597.
- Carlsson C.A., Carlsson G.A. // Health. Phys. 1977. V. 33. P. 481.
- 13. Deasy J.O. // Phys. Med. 1998. V. 25. P. 476.
- 14. *Nedaie H. A., Darestani H., Banaee N. et al.* // J. Med. Phys. 2014. V. 39. P. 10.
- 15. Hashemi S.M., Hashemi-Malayeri B., Raisali G. et al. // Nukleonika. 2007. V. 52. P. 39.
- Naseria A., Mesbahia A. // Rep. Pract. Oncology Radiotherapy. 2010. V. 15. P. 138.
- 17. http://www.ptw.de/acrylic_and_rw3_slab_phantoms0.html.
- Varlamov A.V., Varlamov V.V., Rudenko D.S., Stepanov M.E. Atlas of Giant Dipole Resonances. IAEA Nucl. Data Sect. Vienna: Wagramerstrasse 5. A-1400. 1999. 321 p.
- McDermott B. J., Blain E., Daskalakis A. et al. // Phys. Rev. C. 2017. V. 96. Art. № 014607.