УДК 539.231:669.859:537.622

ОСОБЕННОСТИ ФОРМИРОВАНИЯ ВЫСОКОКОЭРЦИТИВНОГО СОСТОЯНИЯ РЕДКОЗЕМЕЛЬНЫХ МАГНИТОВ

© 2019 г. А. А. Лукин^{1,} *, Н. Б. Кольчугина²

¹Акционерное общество "Спецмагнит", Москва, Россия

²Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения имени А.А. Байкова Российской академии наук, Москва, Россия

*E-mail: alekcandrlukin@rambler.ru Поступила в редакцию 07.09.2018 г. После доработки 31.01.2019 г. Принята к публикации 27.03.2019 г.

Исследовано влияние добавок гидрида соединения TbAl₃ на магнитные свойства и структуру спеченных постоянных магнитов на основе сплава Pr–Fe–Co–Cu–B с повышенной температурной стабильностью. Достигнут следующий уровень магнитных свойств: $B_r = 1.07 \text{ Tл}$, $BH_{max} = 216 \text{ кДж} \cdot \text{м}^{-3}$, $_jH_c = 2000 \text{ кA} \cdot \text{м}^{-1}$, $H_k = 1680 \text{ кA} \cdot \text{м}^{-1}$, $H_k/_jH_c = 0.84$, $\alpha = -0.030\%$ °C⁻¹ (в интервале температур 20–100°C).

DOI: 10.1134/S0367676519070032

введение

В настоящее время существуют две основные группы редкоземельных спеченных магнитотвердых материалов - сплавы типа Nd-Fe-B и Sm-Co-Fe-Cu-Zr, в которых соответственно реализуются следующие механизмы перемагничивания, задержка зародышеобразования обратных доменов и задержка смещения доменных границ [1]. Последняя группа магнитотвердых материалов обладает большей температурной стабильностью, обусловленной более высокими значениями температуры Кюри, но более сложной технологией изготовления [2]. Для первой группы магнитотвердых материалов существенную роль играет структурное состояние фазы Nd₂Fe₁₄B [3-5]. В частности, за счет легирования базового сплава, а также особенностей технологических процессов (механическое легирование, гидридное диспергирование, использование добавок гидридов РЗМ и т.п.), можно существенно изменять структурное состояние основной фазы (повышать ее стабильность, создавать в ней упругонапряженное состояние и наногетерогенное распределение

Таблица 1. Химический состав сплавов (мас. %)

легирующих элементов и т.п.). Это позволяет существенно увеличивать технологическую и эксплуатационную стойкость постоянных магнитов (ПМ). Для повышения температурной стабильности ПМ на основе интерметаллического соединения $Nd_2Fe_{14}B$ их легируют такими элементами, как Dy, Tb, Pr, Co.

Цель данной работы — оптимизация состава сплава типа Nd—Fe—B и технологического процесса для снижения обратимого температурного коэффициента магнитной индукции (α) до уровня величин, соответствующих спеченным магнитам на основе Sm—Co сплавов (0.03% °C⁻¹).

МАТЕРИАЛЫ И МЕТОДИКА

Выплавка исходных сплавов следующего химического состава (табл. 1), осуществлялась в вакуумной индукционной печи из чистых шихтовых материалов в среде особо чистого аргона. Контроль химический состав осуществляли с помощью атомно-эмиссионной спектроскопии. Выбирали химического состава сплава С и соот-

Магнит	Nd	Pr	Tb	Fe	Co	В	Cu	Al	TbAl ₃
А	21.6	_	10.4	46.4	19.9	1.1	0.2	0.4	_
В	_	21.6	10.4	46.4	19.9	1.1	0.2	0.4	_
С	—	21.6	9.6	46.4	19.9	1.1	0.2	—	1.2

Магнит	В ₁ , Тл	BH_{max} , кДж · м ⁻³	$_{j}$ H _c , кA · м ⁻¹	\mathbf{H}_k , к $\mathbf{A} \cdot \mathbf{m}^{-1}$	$H_k/_jH_c$
A	1.110	240	1240	810	0.65
В	1.064	214	1680	1210	0.72
С	1.070	216	2000	1680	0.84

Таблица 2. Магнитные свойства сплавов при комнатной температуре

Таблица 3. Магнитные свойства магнита С при повышенных температурах

<i>T</i> , °C	В _r , Тл	BH_{max} , кДж · м ⁻³	$_{j}$ H _c , кA · м ⁻¹
20	1.070	216	2000/25.1
50	1.062	212	1552/19.4
80	1.052	209	1230/15.4
100	1.045	205	1120/14.1

ношение этого сплава с добавкой TbAl₃ так, чтобы результирующий химический состав магнита соответствовал химическому составу магнита В. Базовые сплавы (1-3) и сплав-добавка TbAl₃ были подвергнуты гидридному диспергированию в протоке сухого водорода при 400°С в течение 1 ч с последующим тонким помолом в вибрационной мельнице в среде изопропилового спирта в течение 50 мин до среднего размера частиц 3 мкм. Для магнитов типа С проводили совместный тонкий помол с добавкой TbAl₃ (1.2 мас. %). После прессования в поперечном магнитном поле и спекания при $T = 1100^{\circ}$ C (2 ч) осуществляли термообработку в вакууме при $T = 900^{\circ}$ С, 2 ч, медленное $(1-2^{\circ}C \text{ мин}^{-1})$ охлаждение до 500°C и выдерживали при этой температуре 1 ч. Магнитные измерения осуществляли с помощью гистерезисграфа МН-50 в замкнутой магнитной цепи. Измерение обратимого температурного коэффициента магнитной индукции (α) в интервале температур 20-100°С осуществляли на образцах магнитов с помощью вибрационного магнитометра, а также в составе магнитной цепи с помощью тесламетра и микровеберметра. Температура Кюри ($T_{\rm C}$) определялась путем измерения температурных зависимостей начальной магнитной проницаемости и намагниченности. Микроструктуру магнитов исследовали методами оптической и растровой микроскопии (РЭМ), а также локального рентгеноструктурного анализа (ЛРСА). Рентгеновский анализ порошков, приготовленных из спеченных магнитов, проводили на дифрактометре ДРОН-3М с использованием медного CuK_a-излучения и графитового монохроматора.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В табл. 2 представлены данные магнитных измерений ПМ при комнатной температуре с помощью гистерезисграфа MH-50 в замкнутой магнитной цепи. Коэффициент а измеряли в интервале температур 20-100°С. Для магнитов А, В и С он составляет соответственно 0.060, 0.030 и 0.030% °С⁻¹. Анализ этих измерений показывает. что такие параметры, как остаточная индукция В. максимальное энергетическое произведение ВН_{тах} и коэффициент а (по абсолютной величине) выше для магнита А по сравнению с магнитами типа В и С. Однако другие параметры – коэрцитивная сила по намагниченности , Н., величина напряженности размагничивающего поля, при которой остаточная намагниченность составляет 90% от остаточной намагниченности H_k и $H_k/_iH_c$, существенно ниже. Для магнитов типа В и С такие параметры как В_r ВН_{тах} и α практически совпадают. Параметры $_{i}H_{c}$, H_{k} и $H_{k}/_{i}H_{c}$ выше для магнитов типа С по сравнению с магнитами типа В.

В табл. 3 представлены результаты измерения магнитных свойств магнита С при повышенных температурах в интервале 20–100°С. На основе этих данных определен температурный коэффициент коэрцитивной силы по намагниченности. Он составляет 0.55% °С⁻¹ в интервале температур 20–100°С. Для исследуемых магнитов определена температура Кюри $T_{\rm C}$, которая для магнитов А, В и С составляет, соответственно, ~490, ~560 и ~570°С.

Исследования микроструктуры методами РЭМ и ЛРСА показали, что в магните А химический состав основной фазы может быть выражен формулой (ат. %): $(Nd_{0.8}Tb_{0.2})_2(Fe_{0.8}Co_{0.2})_{14}B$. Кроме основной фазы обнаружены такие фазы как $(Nd,Tb)_3(Fe,Co)$, $(Nd,Tb)_{rich}$, $(Nd)_{1.1}(Fe,Co)_4B_4$, $(Nd,Tb)(Fe,Co)_2$. Для магнитов В и С состав основной фазы составляет $(Pr_{0.7}Tb_{0.3})_2(Fe_{0.72}Co_{0.28})_{14}B$. При этом в последнем случае наблюдалось градиентное распределение тербия и алюминия в зерне (максимальное у границ зерен). В магнитах В и С отсутствовала граничная магнитомягкая фаза Лавеса.

Более низкие структурно чувствительные параметры ($_{j}H_{c}$, H_{k} , $H_{k}/_{j}H_{c}$) для магнита A по сравнению с магнитами B и C можно объяснить меньшим содержанием тербия в основной магнитной фазе, а также наличием магнитомягкой фазы (Nd,Tb)(Fe,Co)₂. На это указывают также данные магнитных измерений, а именно, большие значения у магнита A таких параметров как B_{r} и BH_{max} . Это следует из того, что магнитный момент атомов тербия направлен антипаралельно магнитным моментам атомов кобальта и железа в решетке фазы типа $(Nd,Pr)_2Fe_{14}B$, при этом имея более низкие значения намагниченности насыщения и в два раза большие значения поля анизотропии (~21 Тл). Для сравнения, поля анизотропии для соединений Nd₂Fe₁₄B и Pr₂Fe₁₄B составляют соответственно ~7 и ~9 Тл [1].

Более высокие структурно чувствительные параметры ($_{j}H_{c}$, H_{k} , $H_{k}/_{j}H_{c}$) для магнита С по сравнению с магнитом В можно объяснить большим содержанием тербия и алюминия в приграничной области основной магнитной фазы. Аналогичный эффект наблюдался ранее на спеченных бескобальтовых магнитах типа (Nd,Pr,Tb)₂Fe₁₄B, а именно, рост $_{j}H_{c}$ при наличии градиента тербия [3, 5] и (или) алюминия [6].

ЗАКЛЮЧЕНИЕ

Показано, что празеодим стабилизирует структуру интерметаллического соединения типа $(Pr,Tb)_2(Fe,Co)_{14}B$ с высоким (до 20 мас. %) содержанием кобальта, а добавки гидрида TbAl₃ в процессе изготовления спеченных магнитов приводят к увеличению коэрцитивной силы по намагниченности и к улучшению температурной стабильности магнитной индукции.

Работа выполнена при финансовой поддержке Министерства образования и науки РФ, соглашение № 14.616.21.0093 (уникальный идентификационный номер RFMEFI61618X0093) и Министерства образования, молодежи и спорта Чешской Республики (№ LTARF1803) и государственного задания ФАНО (тема № 007-00129-18-00).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мишин Д.Д.* Магнитные материалы. М.: Высшая школа, 1991. 253 с.
- Horiuchi Y., Hagiwara M., Endo M. et al. // J. Appl. Phys. 2015. V. 117. P. 17C704.
- 3. Шакин А.В., Лукин А.А., Скуратовский Ю.Е., Добрынин Н.А. // Персп. матер. 2011. № 3. С. 7.
- Лукин А.А., Кольчугина Н.Б., Бурханов Г.С. и др. // ФиХОМ. 2012. № 1. С. 70.
- 5. Лукин А.А. // Металлы. 1996. № 2. С. 131.
- Di J., Ding G., Tang X. et al. // Scr. Mater. 2018. V. 155. P. 50.