УДК 537.622.4

ВЛИЯНИЕ ЗАКАЛКИ ИЗ ЖИДКОГО СОСТОЯНИЯ И АЗОТИРОВАНИЯ НА СТРУКТУРУ И МАГНИТНЫЕ ГИСТЕРЕЗИСНЫЕ СВОЙСТВА СПЛАВОВ (Nd_{1 – x}Ce_x)Fe₁₁Ti (ГДЕ 0 $\leq x \leq$ 0.3)

© 2019 г. М. В. Железный^{1,} *, И. В. Щетинин¹, А. Г. Савченко¹, М. В. Горшенков¹, А. И. Базлов¹, Э. Н. Занаева¹, В. Н. Вербецкий²

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС", Москва, Россия ²Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия *E-mail: markiron@mail.ru

Поступила в редакцию 07.09.2018 г. После доработки 31.01.2019 г. Принята к публикации 27.03.2019 г.

В работе показано влияние на структуру и магнитные гистерезисные свойства при комнатной температуре сплавов на основе соединения $NdFe_{11}Ti$ со структурным типом $ThMn_{12}$ закалки из жидкого состояния, азотирования и легирования церием. Установлено, что оптимальное сочетание магнитных гистерезисных свойств наблюдается для сплавов ($Nd_{1-x}Ce_x$) $Fe_{11}Ti$ при x = 0.2 и 0.3 после закалки из жидкого состояния и азотирования.

DOI: 10.1134/S0367676519070445

ВВЕДЕНИЕ

Сплавы на основе интерметаллических соединений NdFe_{12 – v}M_vN (M = Ti, V, Mo) со структурным типом ThMn₁₂ относятся к перспективным магнитотвердым материалам, которые обладают высокими значениями намагниченности насыщения, температуры Кюри, поля и константы магнитокристаллической анизотропии [1-3]. Рассматриваемые сплавы, после закалки из жидкого состояния или механоактивации находятся в наноструктурированном состоянии, что позволяет получать относительно высокие значения коэрцитивной силы [4-8]. В работе [9] показано, что для быстрозакаленных сплавов (Nd, Се)(Fe, Mo)₁₂ после азотирования удалось получить значения магнитных свойств: $T_c = 337^{\circ}$ С, $_{i}H_{c} = 2.9 \text{ к}\Theta, (B \cdot H)_{max} = 1.6 \text{ M}\Gamma \text{c} \cdot \Theta.$

1. ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сплавы состава (Nd_{1 – x}Ce_x)Fe₁₁Ti (x = 0; 0.1; 0.2; 0.3) массой 120 г получали методом дугового плавления в атмосфере аргона. Затем часть каждого слитка подвергалась закалке из жидкого состояния в атмосфере аргона, которую проводили на установке DVX-II. Линейная скорость вращения медного закалочного диска составляла 30 м · c⁻¹. Образцы после закалки из жидкого состояния азотировали при давлении азота 15 атм и температуре 430°С в течение 40 ч.

Элементный состав образцов определяли на рентгенофлуоресцентном спектрометре с волновой дисперсией Rigaku ZSX Primus II. Рентгеноструктурные исследования при комнатной температуре проводили на дифрактометре Rigaku Ultima IV (Со K_{α} -излучение, $\lambda = 1.79021$ Å); экспериментальные спектры обрабатывали методом Ритвельда с помощью программного обеспечения RigakuPDXL2. Микроструктуру литых сплавов изучали на сканирующем электронном микроскопе TescanVega 3SB, оснащенном приставкой для энергодисперсионного элементного микроанализа Oxford Instruments. Микроструктуру закаленных образцов исследовали с помощью просвечивающего электронного микроскопа JEOLJEM 1400. Магнитные гистерезисные свойства образцов определяли на вибромагнетометре VSM-250 в магнитном поле до 1.6 MA \cdot м⁻¹ (20 кЭ) при комнатной температуре.

2. РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Согласно результатам рентгенофлуоресцентного спектрального анализа, элементный состав каждого сплавав литом состоянии практически отвечает точной стехиометрии интерметаллического соединения ($Nd_{1-x}Ce_x$)Fe₁₁Ti (x = 0-0.3).

Образец	Коэрцитивная сила $_{i}H_{c}, \kappa \mathrm{A}\cdot \mathrm{m}^{-1} \left(\Im ight)$	Остаточная намагниченность $\sigma_r, \mathbf{A} \cdot \mathbf{m}^2 \cdot \mathbf{\kappa} \Gamma^{-1}$	Намагниченность насыщения $\sigma_s, \mathbf{A} \cdot \mathbf{m}^2 \cdot \mathbf{\kappa} \Gamma^{-1}$
После выплавки			
x = 0	9.1 (114.3)	5.3	128.0
x = 0.1	9.1 (113.9)	5.4	124.0
x = 0.2	9.2 (115.4)	5.4	119.0
x = 0.3	9.3 (116.1)	5.5	116.0
После закалки из жидкого состояния			
x = 0	15.4 (193.7)	9.3	97.3
x = 0.1	19.2 (240.7)	11.2	86.8
x = 0.2	28.3 (355.9)	15.8	97.6
x = 0.3	38.7 (486.4)	20.5	104.0
После азотирования			
x = 0	30.8 (387.0)	16.8	120.0
x = 0.1	31.8 (400.2)	20.3	112.0
x = 0.2	49.9 (626.5)	32.2	137.0
x = 0.3	112.9 (1418.0)	41.5	117.0

Таблица 1. Магнитные гистерезисные свойства при комнатной температуре сплавов $Nd_{1-x}Ce_xFe_{11}Ti$ (x = 0-0.3) после различных обработок

Методами РФА и СЭМ-МРСА было определено, что литые сплавы, микроструктура которых характеризовалась дендритной ликвацией, находились в многофазном состоянии. Основной фазой каждого сплава являлось соединение со структурным типом ThMn₁₂ (*I4/mmm*), объемная доля которой составляла 70–80 об. %. В образцах также были обнаружены примесные фазы: α -Fe (*Im-3m*), Fe₂Ti (*P*6₃/*mmc*), (Nd, Ce)Fe₂ (*Fd-3m*) и α -Ce (*P*6₃/*mmc*), содержание которых не превышало 10–15 об. %.

В табл. 1 представлены магнитные гистерезисные свойства, измеренные при комнатной температуре, для сплавов Nd_{1-x}Ce_xFe₁₁Ti (x = 0-0.3) после различных обработок. Значение удельной намагниченности насыщения σ_s для сплавов в литом состоянии при увеличении содержания церия x от 0 до 0.3 уменьшилось от 128 до 116 A · M² · Kr⁻¹, а значения удельной остаточной намагниченности σ_r и коэрцитивной силы $_iH_c$ практически не изменились и составили 5.3 A · M² · Kr⁻¹ и 9.2 кA · M⁻¹, соответственно. Такое изменение гистерезисных свойств можно объяснить фазово-структурной неоднородностью (крупнокристаллическое многофазное состояние, дендритная ликвация) сплавов в литом состоянии.

Из рентгеноструктурных исследований следует, что в образцах после закалки из жидкого состояния доля основной фазы превысила 90 об. %. Наибольшее содержание фазы "1 : 12" (до 96 об. %) было обнаружено для сплава (Nd_{0.7}Ce_{0.3})Fe₁₁Ti (при x = 0.3). Объем элементарной ячейки фазы со структурным типом ThMn₁₂ уменьшился с 353.4 до 349.8 Å³ при увеличении содержания церия *x* от 0 до 0.3. Примесной фазой во всех изученных сплавах являлось α -Fe. Согласно результатам ПЭМ, средний размер равноосных зерен фазы "1:12" после закалки из жидкого состояния составил 100—150 нм.

Коэрцитивная сила и удельная остаточная намагниченность для сплавов после закалки из жидкого состояния при увеличении содержании церия х от 0 до 0.3 монотонно увеличились от 15.4 до 38.7 к $A \cdot M^{-1}$ и от 9.3 до 20.5 $A \cdot M^2 \cdot K\Gamma^{-1}$, соответственно. Значение удельной намагниченности насыщения немонотонным образом изменилось от 97.3 до 104 А \cdot м² \cdot кг⁻¹, достигая минимального значения, равного 86.6 $\mathbf{A} \cdot \mathbf{M}^2 \cdot \mathbf{Kr}^{-1}$ при *x* = 0.1. Повышение значений коэрцитивной силы и остаточной намагниченности рассматриваемых образцов по сравнению с литым состоянием можно объяснить увеличением дисперсности зеренной структуры и повышением значений поля и константы магнитокристаллической анизотропии фазы "1: 12" вследствие частичного замещения ионов Nd ионами Ce.

С помощью рентгеноструктурных исследований было установлено, что в закаленных из жидкости сплавах после процесса азотирования объем элементарной ячейки основной фазы "1 : 12" увеличился на 4-5%. Наблюдаемый объемный эффект связан с внедрением атомов азота в определенные позиции (2b) кристаллической решетки интерметаллического соединения со структурным типом ThMn₁₂ и образованием фазы (Nd, Ce)Fe₁₁TiN_{1- δ} (0 < δ < 1). Дисперсность зеренной структуры фазы "1 : 12" и количество примесной фазы α -Fe в рассматриваемых образцах практически не изменились по сравнению с закаленным состоянием.

Азотирование закаленных сплавов привело к заметному повышению гистерезисных свойств по сравнению с предыдущими состояниями. Для рассматриваемых образцов коэрцитивная сила и удельная остаточная намагниченность при увеличении концентрации церия х от 0 до 0.3 монотонно возрастают от 30.8 до 112.9 кА · м⁻¹ и от 9.3 до $20.5 \,\mathrm{A} \cdot \mathrm{M}^2 \cdot \mathrm{Kr}^{-1}$, соответственно, Значение улельной намагниченности насыщения немонотонным образом изменилось от 120 до 117 $\mathbf{A} \cdot \mathbf{M}^2 \cdot \mathbf{K} \Gamma^{-1}$, достигая максимального значения равного 137 А · м² · кг⁻¹ при x = 0.2. Повышение значений магнитных гистерезисных свойств рассматриваемых образцов по сравнению с образцами, закаленными из жидкого состояния, связано с увеличением объема элементарной ячейки основной магнитотвердой фазы.

ЗАКЛЮЧЕНИЕ

По результатам исследования было установлено, что после закалки из жидкого состояния исходных литых сплавов содержание фазы со структурным типом ThMn₁₂ повысилось от 70 до 90 об. %, а средний размера зерна составил 100–150 нм. Легирование сплава NdFe₁₁Ti небольшим количеством церия (x = 0.1-0.3) приводит к повышению магнитных гистерезисных свойств как после закалки из жидкого состояния, так и после азотирования. Оптимальное сочетание магнитных гистерезисных свойств наблюдается на быстрозакаленных сплавах (Nd_{1 – x}Ce_x)Fe₁₁Ti при x = 0.2 и 0.3 после азотирования: $_iH_c = 49.9$ и 112.9 кA · м⁻¹, $\sigma_r =$ = 32.2 и 41.5 A · м² · кг⁻¹, $\sigma_s = 137$ и 117 A · м² · кг⁻¹.

Работа выполнена при финансовой поддержке Министерства науки и высшего образования Российской Федерации в рамках гранта Президента Российской Федерации для поддержки молодых российских ученых (грант № МК-3616.2017.2). Все магнитные измерения в работе выполнены при частичном финансировании Российским научным фондом в рамках гранта № 18-72-10161.

СПИСОК ЛИТЕРАТУРЫ

- 1. Yang Y.C., Hong S., Zhen-yong Zh. et al. // Solid St. Commun. 1988. V. 68. P. 175.
- Yang J., Dong Sh., Yang Y.-C. et al. // J. Appl. Phys. 1994. V. 75. P. 3013.
- Buschow K.H.J. // J. Magn. Magn. Mater. 1991. V. 100. P. 79.
- Efthimiadis K.G., Makridis S., Chadjivasiliou S.C. et al. // J. Magn. Magn. Mater. 2003. V. 267. P. 19.
- 5. Itsukaichi T., Umemoto M., Okane I. et al. // J. Alloys Comp. 1993. V. 193. № 1–2. P. 262.
- Jin Z.-Q. Sun X.K., Liu W. et al. // J. Magn. Magn. Mater. 1997. V. 169. № 1–2. P. 135.
- Lin Zh., Han J., Liu Sh. et al. // J. Magn. Magn. Mater. 2012. V. 324. P. 196.
- Liu Sh., Han J., Du H. et al. // J. Magn. Magn. Mater. 2007. V. 312. № 2. P. 449.
- Zhou C., Pinkerton F.E. // J. Magn. Magn. Mater. 2014. V. 369. P. 127.