УДК 539.164

ИЗМЕРЕНИЕ ВЫХОДА ТОРМОЗНОГО ИЗЛУЧЕНИЯ ПРИ АЛЬФА-РАСПАДЕ ²¹⁴Ро¹

© 2019 г. Н. В. Еремин^{1, *}, А. А. Пасхалов²

¹Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт химии и механики", Москва, Россия ²Федеральное государственное бюджетное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия *E-mail: eremin@spels.ru

> Поступила в редакцию 01.10.2018 г. После доработки 15.10.2018 г. Принята к публикации 19.11.2018 г.

Представлены результаты эксперимента по измерению вероятности испускания внутреннего тормозного излучения при α-распаде ядра ²¹⁴Po с использованием германиевого детектора большого объема и быстрых временных оцифровщиков сигналов с гамма- и альфа-детекторов. Получено удовлетворительное согласие между экспериментальными данными и результатами имеющихся в литературе расчетов с использованием реалистического и осцилляторного ядерных потенциалов.

DOI: 10.1134/S0367676519040082

ВВЕДЕНИЕ

В настоящее время существует различие в экспериментальных данных по выходам внутреннего тормозного излучения, возникающего при α -распаде ядра ²¹⁰Ро в области энергий тормозных фотонов более 300 кэВ. Так, в экспериментах с использованием сцинтилляционного NaI(T1)-детектора [1] была измерена вероятность испускания тормозного фотона с энергией 500 кэВ на уровне 5 · 10⁻¹¹ фотон/(кэВ · распад), в то время как в экспериментах с использованием сциптилляционного одной секции детекторной установки MINIBALL из сверхчистого германия [2] был достигнут предел 5 · 10⁻¹² фотон/(кэВ · распад) при той же энергии.

При теоретическом описании явления испускания внутреннего тормозного излучения при αраспаде ²¹⁰Ро наблюдается совпадение экспериментальных данных из [2] с результатами расчета выхода тормозных фотонов в рамках одночастичной квантово-механической модели α-распада с использованием двух ядерных потенциалов: прямоугольной ямы глубиной ~10 МэВ, взятой из [3], и потенциала МакФаддена-Сэчлера глубиной ~100 МэВ [4].

Для случая испускания тормозных фотонов при α -распаде ядра ²¹⁴Ро экспериментальные данные по выходу тормозного излучения с энергией E_{γ} менее 600 кэВ, полученные с использованием сцинтилляционного NaI(Tl)-детектора [5, 6], лежат ниже теоретических расчетов с использованием реалистического ядерного потенциала [7]. Другими словами, имеющиеся в литературе экспериментальные данные и теоретические расчеты по выходу тормозного излучения противоречат друг другу.

В данной работе представлены результаты эксперимента по измерению вероятности испускания внутреннего тормозного излучения при αраспаде ядра ²¹⁴Ро с использованием германиевого детектора большого объема и быстрых временных оцифровщиков сигналов с гамма- и альфадетекторов. Экспериментальные вероятности сопоставлены с результатами расчетов при использовании различных ядерных потенциалов.

ЭКСПЕРИМЕНТАЛЬНАЯ УСТАНОВКА И ОБРАБОТКА ПОЛУЧЕННЫХ ДАННЫХ

Блок-схема экспериментальной установки приведена на рис. 1. Нами проведены измерения выхода тормозного излучения при α-распаде ядра

¹ Статья подготовлена по материалам доклада, представленного на 68-ой Международной конференции по ядерной спектроскопии и структуре атомного ядра "Фундаментальные проблемы ядерной физики, атомной энергетики и ядерных технологий" (ЯДРО-2018).

Рис. 1. Блок-схема эксперимента по регистрации тормозного излучения при α-распаде тяжелых ядер: 1 – вакуумная камера, 2 – германиевый детектор, 3 – источник α-частиц, 4 – кремниевый детектор.

²¹⁴Ро, образующегося в цепочке распада ²²⁶Ra с использованием современной экспериментальной базы — детектора из сверхчистого германия большого объема (см. рис. 1) и быстрых временных оцифровщиков формы сигналов.

С целью снижения влияния случайных совпадений на величину выхода тормозных фотонов, регистрируемых в совпадениях с α -частицами, интенсивность α -частиц в полупроводниковом кремниевом детекторе была уменьшена на порядок по сравнению с величиной, приведенной в [2]. Использование быстрых временных оцифровщиков также позволило существенно уменьшить вклад случайной компоненты в выход тормозного излучения путем фильтрации двойных совпадений.

Сигналы с предусилителей α- и γ-трактов поступали на два из четырех каналов цифрового запоминающего осциллографа производства фирмы Tektronix DPO 7354 с операционной системой Windos XP. В осциллограф встроен 8-битный амплитудо-цифровой преобразователь размерностью 256 каналов. Цена шкалы АЦП для α- и γ-трактов равнялась 0.3906 и 0.7813 мВ/канал, соответственно.

Сбор данных был настроен на регистрацию совпадений импульсов во временном окне 200 нс (режим триггера "Setup/Hold" – перед совпадениями $t_S = 100$ нс и $t_H = 100$ нс после совпадений). Для оптимизации использования ресурсов осциллографа и детализации сигналов был выбран следующий режим регистрации: длина выборки – 20000 точек; частота оцифровки – $10^9 c^{-1}$; полоса пропускания без математической обработки – 2.5 ГГц.

При этом длительность фрейма (временной развертки осциллограммы) составила 20 мкс, а предыстория, необходимая для определения базовой линии регистрируемого импульса – 5.2 мкс. При данных параметрах один набор файлов (содержащий 100 осциллограмм), соответствующий событиям α – γ -совпадений, занимал около 40 Мб на жестком диске. Сохраненные в файлах данные обрабатывались в режиме off-line с помощью разработанных цифровых алгоритмов в пакетах C++ и Fortran.

Следует отметить, что быстрый временной оцифровщик формы сигнала позволяет избежать использования в эксперименте набора блоков сложной электронной аппаратуры, так как путем математической обработки массива измеренных осциллограмм возможно выполнение многих операций без потери исходных данных. К ним, прежде всего, относится введение поправок на смещение базовой линии, возникающей при высокой скорости счета частиц в тракте, определение энергии зарегистрированных частиц, осуществление временной привязки к импульсу и разделение наложенных импульсов.

Одним из факторов, влияющих как на временную неопределенность, так и на энергетическое разрешение детектора, является зашумленность сигнала. Процедура подавления шума была основана на вейвлет-обработке формы сигнала [8] и включала в себя: выбор глубины разложения J; вычисление коэффициентов аппроксимации и детализации: пороговую обработку коэффициентов детализации в соответствии с выбранным алгоритмом и видом порога. Эта процедура также позволяла провести реконструкцию сигнала с использованием оригинальных коэффициентов аппроксимации на уровне Ј и модифицированных коэффициентов детализации на уровнях от 1 до J (в расчетах использовался жесткий тип порога детализации).

На рис. 2 представлена осциллограмма формы сигнала *U*до и после вейвлет-обработки. Как видно из рисунка, уровень шума существенно снизился после вейвлет-обработки, что привело к улучшению энергетического и временного разрешения γ-тракта.

ЭКСПЕРИМЕНТАЛЬНЫЕ ВЕРОЯТНОСТИ ВЫХОДОВ ВНУТРЕННЕГО ТОРМОЗНОГО ИЗЛУЧЕНИЯ В СРАВНЕНИИ С ТЕОРЕТИЧЕСКИМИ РАСЧЕТАМИ

Дважды дифференциальная вероятность выхода тормозного излучения, усредненная по телесному углу, задаваемому геометрией эксперимента, определялась на основе измеренного с поправкой

Рис. 2. Зависимость сигнала *U* с германиевого детектора от времени до (черные точки) и после шумоподавления (сплошная кривая) с использованием вейвлет-преобразования Хаара.

на комптоновское рассеяние числа α - γ -совпадений $N_{\alpha-\gamma}^{true}$ по формуле:

$$\left\langle \frac{d^2 P_{\alpha-\gamma}}{dE_{\gamma} d\Omega_{\gamma}} (\Theta_{\alpha-\gamma}) \right\rangle = \frac{N_{\alpha-\gamma}^{true} (\Theta_{\alpha-\gamma})}{n_{\alpha} \Delta t \varepsilon(E_{\gamma}) \Delta E_{\gamma}}, \qquad (1)$$

где $N_{\alpha-\gamma}^{true}$ — число истинных событий, соответствующих совпадениям α -частиц с тормозными фотонами или с γ -квантами с энергиями в интервале $(E_{\gamma} \pm \Delta E_{\gamma}/2), n_{\alpha}$ — интенсивность α -линии, измеренная без совпадений с фотонами (γ -квантами), Δt — время измерения, $\varepsilon(E_{\gamma})$ — абсолютная эффективность регистрации фотонов Ge-детектором.

Значения полной вероятности испускания тормозного излучения и вероятностей α-распада на возбужденные состояния ядер с последующим испусканием γ-кванта рассчитывались по формуле:

$$\frac{dP_{\alpha-\gamma}}{dE_{\gamma}} = \frac{\left\langle \frac{d^2 P_{\alpha-\gamma}}{dE_{\gamma} d\Omega_{\gamma}} (\Theta_{\alpha-\gamma}) \right\rangle}{2\pi \langle W(E_{\gamma}, \theta_{\alpha-\gamma}) \rangle},$$
(2)

где $\langle W(E_{\gamma}, \theta_{\alpha-\gamma}) \rangle$ — величина функции угловых α — γ -корреляций при фиксированных значениях (E_{γ}, θ) и конечных размерах детекторов, получаемой сверткой функции теоретической угловой корреляции с эффективностью регистрации α — γ совпадений, рассчитанной пакетом Geant4.

На рис. 3 представлены полученные экспериментальные данные по выходу тормозного излу-

Рис. 3. Зависимость вероятности выхода тормозного излучения от энергии фотона при α -распаде ²¹⁴Ро. Экспериментальные данные: — результаты настоящей работы, \bullet , \bigcirc – предыдущих экспериментов [5, 6]. Теоретические кривые показывают расчеты: сплошная – с осцилляторным α -ядерным потенциалом; штрих – с реалистическим потенциалом [7], пунктир – с потенциалом прямоугольной ямы (V_0 = 12.5 МэВ, n = 6), штрихпунктир – с тем же потенциалом, но с другими его параметрами (V_0 = 75.8 МэВ, n = 12).

чения
$$\frac{dP_{\alpha-\gamma}}{dE_{\gamma}}$$
 при α -распаде ядра ²¹⁴Ро вместе с дан-

ными предыдущих экспериментов [5, 6]. Как видно из рисунка, для энергий $E_{\gamma} > 300$ кэВ наблюдается удовлетворительное согласие между полученными в данной работе экспериментальными значениями вероятности испускания тормозных фотонов при α -распаде ядер ²¹⁴Ро, и предыдущими измерениями. Некоторое различие в низкоэнергетической ($E_{\gamma} < 300$ кэВ) области связано с более точным извлечением данных в последних экспериментах по выходу тормозного излучения вблизи пиков характеристического рентгеновского излучения *К*серии, возникающего при ионизации атомной оболочки вылетающей из ядра α -частицей.

На этом же рисунке приведены результаты теоретического расчета, выполненного в работе [7] с использованием ядерного оптического потенциала МакФаддена—Сэчлера (штриховая линия), и результаты расчетов настоящей работы. Эти расчеты выполнены с использованием α -ядерного потенциала прямоугольной ямы [3] ($V_0 = 12.5$ МэВ и числом нулей волновой функции n = 6); с ядерным потенциалом, определенным на основе правила Бора—Зоммерфельда ($V_0 = 75.85$ МэВ и n = 12), а также с использованием α -ядерного осцилляторного потенциала. Как видно из рисунка, наилучшее согласие между полученными экспериментальными данными и результатами расчетов наблюдается для осцилляторного и реалистического α -ядерного потенциалов. Отметим, что результаты данного эксперимента показывают отсутствие локального минимума в выходе внутреннего тормозного излучения для ядра ²¹⁴Ро при $E_{\gamma} \sim 400$ кэВ, наблюдаемого японской группой при α -распаде ²¹⁰Ро [8].

ЗАКЛЮЧЕНИЕ

В работе получены экспериментальные дан*dP*

ные по $\frac{dP_{\alpha-\gamma}}{dE_{\gamma}}$ при α -распаде ядра ²¹⁴ Ро. Для энер-

гий $E_{\gamma} > 300'$ кэВ наблюдается удовлетворительное согласие между полученными нами экспериментальными значениями вероятности испускания тормозных фотонов при α -распаде ядер ²¹⁴Ро и предыдущими измерениями, несмотря на то, что временной интервал между ними составляет около двадцати лет. В области $E_{\gamma} < 300$ кэВ нам уда-

лось корректно определить $\frac{dP_{\alpha-\gamma}}{dE_{\gamma}}$ вблизи пиков ха-

рактеристического рентгеновского излучения.

Рассчитанные в работе значения полной вероятности испускания тормозного излучения и вероятностей α-распада позволили выбрать потенциалы α-ядерного взаимодействия, позволяющие со-

гласовать экспериментальные зависимости $\frac{dP_{\alpha-\gamma}}{dE_{\gamma}}$

от энергии тормозного фотона при α -распаде ²¹⁴Ро. Наилучшее согласие с экспериментом наблюдается для осцилляторного и реалистического α -ядерного потенциалов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Еремин Н.В., Климов С.В., Смирнов Д.А., Тулинов А.Ф. //* Вестн. Моск. ун-та. Сер. 3. Физ. Астрон. 2000. № 5. С. 53.
- Boie H., Scheit H., Jentschura U.D. et al. // Phys. Rev. Lett. 2007. V. 99. Art. № 022505.
- Papenbrock T., Bertsch G.F. // Phys. Rev. Lett. 1998. V. 80. P. 4141.
- Кургалин С.Д., Чувильский Ю.М., Чуракова Т.А. // Изв. РАН. Сер. физ. 2001. Т. 65. С. 666.
- D'Arrigo A., Eremin N.V., Giardina G. et al. // Phys. Let. B. 1994. V. 332. P. 25.
- Giardina G., Fazio G., Mandagli G. et al. // Eur. Phys. J. A. 2008. V. 36. P. 31.
- Кургалин С.Д., Чувильский Ю.М., Чуракова Т.А. // ЯФ. 2016. Т. 79. С. 635.
- Kasagi J., Yamazaki H., Kasajima N., Ohtsuki T., Yuki H. // Preprint of Lab. of Nucl. Sci. Miyagi: Tohoku University (Japan), 1996.