УЛК 537.591.15

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР ПЕРВИЧНЫХ КОСМИЧЕСКИХ ЛУЧЕЙ ПО ДАННЫМ УСТАНОВОК ДЛЯ РЕГИСТРАЦИИ ЧЕРЕНКОВСКОГО СВЕТА ШАЛ ТУНКА-133 И TAIGA-HISCORE

© 2019 г. В. В. Просин^{1,} *, И. И. Астапов², П. А. Безъязыков³, В. Борейко⁴, А. Н. Бородин⁴, М. Брюкнер⁵, Н. М. Буднев³, Р. Вишневский⁵, А. Ю. Гармаш^{6, 7}, А. Р. Гафаров³, Н. В. Горбунов⁴, В. М. Гребенюк^{4, 8}, О. А. Гресс³, Т. И. Гресс³, А. А. Гринюк⁴, О. Г. Гришин³, А. Н. Дячок³, В. М. Гребенюк^{*, о}, О. А. Гресс⁵, Г. И. Гресс⁵, А. А. Гринюк^{*}, О. Г. Гришин⁵, А. Н. Дячок^{*}, Д. П. Журов³, А. В. Загородников³, В. Л. Зурбанов³, А. Л. Иванова³, Ю. А. Казарина³, Н. Н. Калмыков¹, В. В. Киндин², П. С. Кириленко⁶, С. Н. Кирюхин³, В. А. Кожин¹, Р. П. Кокоулин², К. Г. Компаниец², Е. Е. Коростелева¹, Е. А. Кравченко^{6, 7}, Л. А. Кузьмичев¹, М. Куннас⁹, А. Кьявасса¹⁰, А. А. Лагутин¹¹, Ю. Лемешев³, В. В. Ленок³, Б. К. Лубсандоржиев¹², Н. Б. Лубсандоржиев¹, Р. Р. Миргазов³, Р. Мирзоян^{3, 13}, Р. Д. Монхоев³, Э. А. Осипова¹, М. И. Панасюк¹, Л. В. Паньков³, А. Л. Пахоруков³, А. А. Петрухин², В. А. Полешук³, М. Попеску¹⁴, Е. Г. Попова¹, А. Порелли⁵, Е. Б. Постников¹, В. С. Птускин¹⁵, А. А. Пушнин³, Р. И. Райкин¹¹, Г. И. Рубцов¹², Е. В. Рябов³, Б. М. Сабиров⁴, Я. И. Сагань^{4, 8}, В. С. Самолига³, Л. Г. Свешникова¹, Ю. А. Семеней³, А. Ю. Сидоренков¹², А. А. Силаев¹, А. А. Силаев (мл.)¹, А. В. Скурихин¹, М. Слунечка⁴, А. В. Соколов^{6, 7}, В. А. Таболенко³, Б. А. Таращанский³, Л. Г. Ткачев^{4, 8}, А. В. Ткаченко⁴, М. Тлужиконт⁹, О. Л. Федоров³,

Д. Хорнс⁹, К. Шпиринг⁵, И. И. Яшин²

¹Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова", Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия

 $^2 \Phi$ едеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

 3 Федеральное государственное бюджетное образовательное учреждение высшего образования

"Иркутский государственный университет". Научно-исследовательский институт прикладной физики, Иркутск, Россия

 4 Международная межправительственная организация Объединенный институт ядерных исследований, Москва, Россия

⁵Немеикий электронный синхротрон (DESY). Гамбург. Германия

 $^6 \Phi$ едеральное государственное автономное образовательное учреждение высшего образования

"Новосибирский национальный исследовательский государственный университет", Новосибирск, Германия

 7 Φ едеральное государственное бюджетное научное учреждение " Φ едеральный исследовательский иентр

Институт прикладной физики Российской академии наук", Нижний Новгород, Россия

⁸Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

⁹Университет Гамбурга, Институт экспериментальной физики, Гамбург, Германия ¹⁰Физический факультет университета Турина и Национальный институт ядерной физики, Турин, Италия

 $^{11} \Phi$ едеральное государственное бюджетное образовательное учреждение высшего образования

"Алтайский государственный университет", Барнаул, Россия

¹²Федеральное государственное учреждение науки Институт ядерных исследований Российской академии наук, Москва, Россия

13 Институт Макса Планка, Мюнхен, Германия

¹⁴Институт космических наук, Бухарест, Румыния

¹⁵Федеральное государственное бюджетное учреждение науки "Институт Земного магнетизма,

ионосферы и распространения радиоволн имени Н.В. Пушкова Российской академии наук", Москва, Россия

*E-mail: v-prosin@vandex.ru

Поступила в редакцию 15.10.2018 г. После доработки 20.02.2019 г.

Принята к публикации 26.04.2019 г.

Черенковская установка для регистрации широких атмосферных ливней (ШАЛ) Тунка-133 набирала данные в течение 7 зимних сезонов с 2009 по 2017 г. Получен дифференциальный энергетический спектр всех частиц в диапазоне энергий 6 · 10¹⁵–3 · 10¹⁸ эВ за 2175 ч. Установка TAIGA-HiSCORE находится в стадии непрерывного расширения и модернизации. Здесь приводятся результаты обработки данных, полученных с помощью 30 станций первой очереди за 35 ясных безлунных ночей зимой 2017—2018 гг. Энергия первичной частицы выше 10¹⁵ эВ измерялась, как и на установке Тунка-133, по параметру плотности потока черенковского света на расстоянии 200 м от оси. Для меньших энергий разработан метод определения энергии по потоку света вблизи оси ливня. В результате построен спектр в диапазоне 2 · 10¹⁴—10¹⁷ эВ. Объединенный спектр по двум установкам охватывает диапазон 2 · 10¹⁴—2 · 10¹⁸ эВ.

DOI: 10.1134/S0367676519080349

введение

Установка Тунка-133, описанная в работах [1, 2], набирала данные в течение 7 зимних сезонов 2009—2014 гг. и 2015—2017. Накоплена информация за 350 ясных безлунных ночей. Полное время набора данных 2175 ч.

Установка TAIGA-HiSCORE находится в сталии непрерывного расширения и модернизации. Здесь приводятся данные, полученные с помощью 30 станций первой очереди за 35 ясных безлунных ночей 2017-2018 гг. Полное время набора данных 180 ч. Обработка экспериментальных данных проводится с помощью программ, в которых все аппроксимирующие и пересчетные функции получены из анализа искусственных событий, сгенерированных по программе CORSIKA для диапазона энергий от 10¹⁴ до 10¹⁸ эВ [1, 3, 4]. Для каждого ливня восстанавливаются направление прихода, координаты оси на плоскости наблюдения и энергия первичной частицы. В результате получен объединенный дифференциальный энергетический спектр всех частиц в лиапазоне энергий $2 \cdot 10^{14} - 2 \cdot 10^{18}$ эВ.

ОБРАБОТКА ДАННЫХ И ВОССТАНОВЛЕНИЕ ПАРАМЕТРОВ ШАЛ

Обработка данных для установки Тунка-133 описана в работах [1, 2]. Напомним, что положение оси ШАЛ определяется путем фитирования измеренных значений амплитуд импульсов функцией амплитуда-расстояние (ФАР) [1]. Направление прихода ливня, характеризующееся зенитным и азимутальным углами оси, определяется путем фитирования измеренных задержек кривым фронтом [5]. Энергия ливня определяется по плотности потока черенковского света на расстоянии 200 м от оси Q_{200} . Для интерполяции к 200 м от измеренных значений Q_i используется ФПР, описанная в [4]. Связь энергии с Q_{200} получена также из расчета по программе CORSIKA [1].

Основные параметры ШАЛ по данным установки ТАІGА-НіSCORЕ восстанавливаются с использованием тех же алгоритмов и фитирующих функций, что и для установки Тунка-133. В частности, для ШАЛ с энергией более 10^{15} эВ энергия ливня определяется по плотности потока черенковского света на расстоянии 200 м от оси Q_{200} . Эффективной площадью для отбора событий считается площадь эллипса с полуосями 300 и 225 м.

Для диапазона энергий менее 10¹⁵ эВ не во всех ливнях имеется измерение потока света на рас-

стоянии 200 м от оси. Поэтому был разработан другой метод определения энергии: по показаниям детекторов, ближайших к оси. Положение оси ливня в этом случае находится как центр тяжести измеренных амплитуд по 4-м станциям, ближайшим к оси. Расчет показывает, что при существующей геометрии плотность потока света измеряется для этого случая в среднем на расстоянии 70 м от оси. Корреляции Q_{70} с зенитным углом ливня и первичной энергией были найдены по экспериментальным данным для диапазона энергий 10^{15} — $3 \cdot 10^{15}$ эВ, в котором для каждого ливня можно определить как Q_{70} , так и Q_{200} . Пересчет Q_{70} от измеренного зенитного угла к вертикальному направлению:

$$\lg Q_{70}(0) = \lg Q_{70}(\theta) + 1.06(\sec \theta - 1)$$

Пересчет от $Q_{70}(0)$ к энергии: $E_0 = CQ_{70}(0)^g$, где $g = 0.88 \pm 0.01$.

Метод определения положения оси ШАЛ по центру тяжести приводит к большим ошибкам на краю расположения станций установки. Для получения неискаженного спектра из эффективной площади исключается полоса шириной 50 м на краю установки, т.е. в качестве эффективной площади используется площадь эллипса с полуосями 250 и 175 м.

Абсолютная калибровка энергии первичных частиц проводится, как и во всех работах в Тункинской долине, путем нормировки полученных интегральных спектров на интегральный спектр, полученный в эксперименте Тунка-25 [7], нормированный в свою очередь на абсолютную интенсивность космических лучей, полученную в эксперименте QUEST [8].

ЭНЕРГЕТИЧЕСКИЙ СПЕКТР

Для построения спектра по результатам обработки данных установки Тунка-133 отбирались события с зенитными углами $\theta \le 45^{\circ}$ и положением осей в круге радиусом $R_c < 450$ м для энергий $E_0 < 10^{17}$ эВ и в круге радиусом $R_c < 800$ м для ливней с энергией $E_0 \ge 10^{17}$ эВ. Эффективность отбора событий достигает ~100% для энергий $E_0 > 6 \cdot 10^{15}$ эВ для круга радиусом 450 м и для энергий несколько менее 10^{17} эВ для круга радиусом 800 м. Таким образом, для построения спектра использованы ~375000 событий. Энергию более 10^{17} эВ имеют около 4200 событий.

Рис. 1. Дифференциальный энергетический спектр (умноженный на *E*³), полученный на установках: *1* – Тунка-25, *2* – Тунка-133, *3* – ТАІGА-НіSCORE.

Для построения спектра по результатам обработки данных установки TAIGA-HiSCORE отбирались события с зенитными углами $\theta \le 30^{\circ}$. Спектр содержит более 170000 событий с энергией более 10^{15} эВ и около 700000 событий в диапазоне энергий $3 \cdot 10^{14} - 10^{15}$ эВ. Точки в диапазоне $2 \cdot 10^{14} - 3 \cdot 10^{14}$ эВ построены по данным одной ночи с уникально хорошей прозрачностью (28.10.2018) и содержат ~29000 событий.

Полученный комбинированный дифференциальный энергетический спектр показан на рис. 1 вместе со спектром установки Тунка-25 [7]. Начальный участок спектра ($2 \cdot 10^{14} - 3 \cdot 10^{15}$ эВ) может быть аппроксимирован степенным законом с показателем 2.73 ± 0.01. Кроме статистической ошибки, здесь возможна систематическая ошибка, связанная с возможной неточностью в показателе пересчетной формулы от Q_{70} к энергии. При больших энергиях спектр демонстрирует целый ряд особенностей — отклонений от степенного закона. На участке $3 \cdot 10^{15} - 6 \cdot 10^{15}$ происходит постепенное нарастание крутизны наклона спектра. Последующие точки до энергии 2 · 10¹⁶ эВ можно описать степенным законом с показателем $\gamma = 3.3$. Далее спектр резко становится более пологим, и в диапазоне 2 · $10^{16} < E_0 < 3 \cdot 10^{17}$ эВ в целом не противоречит степенному виду с наклоном $\gamma = 2.99 \pm 0.01$. При больших энергиях показатель резко увеличивается до $\gamma = 3.34 \pm 0.09$ (второе "колено"). На рис. 2 спектр сравнивается с рядом других работ. На левом краю наш спектр стыкуется со спектрами всех частиц, полученными в прямых экспериментах баллонном АТИК-2 [9] и спутниковым НУКЛОН (КЛЕМ) [10]. Наибольшую статистику в этой области энергий получил в последнее время наземный эксперимент НАWC [11] в горах в Мексике. Его спектр отлично стыкуется как с прямыми экспериментами, так и с нашими результатами.

В области энергий 10¹⁶—10¹⁷ эВ наблюдается согласие результата настоящей работы со спектрами установок KASCADE-Grande [12] и Ice-TOP [13]. Заметное на рис. 2 отличие этих спектров от спектра установки Тунка-133 может быть ликвидировано увеличением оценки энергии на 3% для KASCADE-Grande и таким же уменьшением оценки энергии для Ice-TOP. Такие сдвиги существенно меньше абсолютной точности этих экспериментов.

При энергиях, предельно больших для эксперимента Тунка-133, наблюдается совпадение с данными экспериментов Telescope Array (TA) [14] и PAO [15].

Рис. 2. Сравнение с данными других работ: 1 – АТИК2, 2 – НУКЛОН (КЛЕМ), 3 – НАWC, 4 – Тунка-133, 5 – ТАІGА-HiSCORE, 6 - KASCADE-Grande, 7 - IceTOP, 8 - TA, 9 - PAO.

ЗАКЛЮЧЕНИЕ

Таким образом, совместный спектр черенковских установок Тунка-133 и TAIGA-HiSCORE перекрывает 4 порядка по энергии единой методикой и демонстрирует прекрасное согласие результатов прямых спутниковых и баллонных экспериментов с результатами гигантских наземных установок.

Работа поддержана Минобрнауки России 3.9678.2017/БЧ, 3.904.2017/ПЧ. (госзадания 3.6787.2017/ИТР, 1.6790.2017/ИТР), грантом РФФИ 16-29-13035, выполнена с использованием оборудования ТАЦКП в рамках соглашения с Минобрнауки России (уникальный идентификатор RFMEFI59317X0005).

СПИСОК ЛИТЕРАТУРЫ

- 1. Prosin V.V., Berezhnev S.F., Budnev N.M. et al. // Nucl. Instr. Meth. Phys. Res. A. 2014. V. 756. P. 94.
- 2. Бережнев С.Ф., Буднев Н.М., Бюкер М. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. № 3. С. 381; Berezhnev S.F., Budnev N.M., Büker M. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. № 3. P. 348.
- 3. Korosteleva E.E., Kuzmichev L.A., Prosin V.V., Zablotsky A.V. // Proc. 31st ICRC. (Lodz, 2009). P. 492.

- 4. Prosin V.V., Budnev N.M., Chvalaiev O.A. et al. // Nucl. Phys. B. 2009. V. 190. P. 247.
- 5. Prosin V.V., Berezhnev S.F., Budnev N.M. et al. // EPJ Web Conf. 2016. V. 121. Art. № 03004.
- 6. Gress O., Astapov I., Budnev N. et al. // Nucl. Instr. Meth. Phys. Res. A. 2017. V. 845. P. 367.
- 7. Budnev N., Chernov D., Gress O. et al. // Astropart. Phys. 2013. V. 50–52. P. 18
- 8. Korosteleva E.E., Prosin V.V., Kuzmichev L.A., Navar-ra G. // Nucl. Phys. B. 2007. V. 165. P. 74.
- 9. Панов А.Д., Адамс Дж.Х. мл., Ан Х.С. и др. // Изв. РАН. Сер. физ. 2009. Т. 73. № 5. С. 602; *Panov A.D.*, Adams J.H., Ahn H.S. et al. // Bull. Russ. Acad. Sci. Phys. 2009. V. 73. № 5. P. 564.
- 10. Gorbunov N., Grebenyuk V., Karmanov D. et al. // arXiv: 1809.05333. 2018.
- 11. HAWC Collaboration// Phys. Rev. D. 2017. V. 96. Art. № 122001.
- 12. KASCADE-Grande Collaboration// Astropart. Phys. 2012. V. 36. P. 183.
- 13. Aartsen M.G., Abbasi R., Abdou Y. et al. // Phys. Rev. Lett. D. 2013. V. 88. Art. № 042004.
- 14. Abu-Zayyad T., Aida R., Allen M. et al. // Astropart. Phys. 2013. V. 48. P. 16.
- 15. Pierre Auger Collaboration // Proc. 33rd ICRC. (Rio De Janeiro, 2013). P. 769.