УДК 537.591.15

АЛГОРИТМ РЕКОНСТРУКЦИИ СОБЫТИЙ ТИПА ШАЛ ОРБИТАЛЬНОГО ДЕТЕКТОРА "ТУС"

© 2019 г. С. А. Шаракин*

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова",

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия

**E-mail: sharakin@mail.ru* Поступила в редакцию 10.10.2018 г. После доработки 20.02.2019 г. Принята к публикации 26.04.2019 г.

28 апреля 2016 г. на околоземную орбиту в составе научной аппаратуры спутника "Ломоносов" выведен детектор космических лучей предельно высоких энергий (КЛ ПВЭ) "ТУС". Детектор проводит измерения флуоресцентного излучения широкого атмосферного ливня (ШАЛ), возникающего в атмосфере при попадании в нее космических лучей с энергией 100 ЭэВ и больше. В работе представлен алгоритм реконструкции направлений прихода частицы КЛ ПВЭ, в основе которого лежит аппроксимация трека (изображения ШАЛ) на матрице фотоприемника в виде равномерного прямолинейного движения точки (центроида изображения). Проверка метода и оценка его точности в случае гауссовой функции рассеяния точки (ФРТ) проведена на модельных примерах. Данный метод может быть использован как при реконструкции событий "ТУС", так и будущих аналогичных миссий, например K-EUSO.

DOI: 10.1134/S0367676519080350

Введение

За время своей работы на околоземной орбите "ТУС" (с мая 2016 г.) зарегистрировал ряд событий с характерными для ШАЛ пространственно-временными характеристиками. Детектор состоит из многоканального фотоприемника, расположенного в фокусе зеркала-концентратора площадью примерно 2 м² и фокусным расстоянием f = 1500 мм. Отдельные каналы фотоприемника сгруппированы в модули (16 каналов в одном, всего 16 модулей). Входное окно каждого канала представляет собой квадрат ("пиксель") со стороной a = 15 мм, т.е. характерное угловое разрешение прибора составляет ү_{ріх} = 10 мрад. Задачей детектора является сбор флуоресцентного излучения ШАЛ и формирование изображения в виде трека на матрице каналов. Событие "ТУС" представляет собой запись цифрового сигнала (кода АЦП) фиксированной длительности (256 отчетов) по всем каналам фотоприемника. Конечные размеры пикселя, а также существенные аберрации оптической системы и флуктуации фона делают нетривиальной задачу оценки параметров трека и последующую реконструкцию параметров исходной частицы КЛ ПВЭ. Детальное описание детектора и первые результаты анализа данных приведены в работах [1, 2].

ТРЕК ШАЛ И ЕГО ПАРАМЕТРЫ

Перемещение точечного источника излучения в поле зрения орбитального детектора можно разложить на движение в плоскости, перпендикулярной лучу зрения (картинная плоскость), и движение вдоль луча зрения. Скорость *v* и направление движения источника связаны с угловой скоростью перемещения объекта в поле зрения:

$$\omega R = v \sin\beta/(1 + v/c \cos\beta), \qquad (1)$$

где β — угол между направлением движения частицы и лучом зрения (при наблюдении в надир он совпадает с зенитным углом), *R* — расстояние от детектора до точки излучения, а *с* — скорость света. (Появление справа в (1) отличного от единицы знаменателя связано с эффектом запаздывания.) Для релятивистской частицы *v* ≈ *c* и выражение (1) упрощается до $\omega R = ctg(\beta/2)$.

В модели "плоской" атмосферы (пренебрегая кривизной земной поверхности на масштабах характерной длины свечения) несложно показать, что β выражается через зенитный Θ и азимутальный Φ углы направления прихода частицы следующим образом:

$$\cos\beta = \cos\gamma\cos\Theta - \cos(\Phi - \Psi)\sin\gamma\sin\Theta, \quad (2)$$

где γ — угол между лучом зрения и направлением в надир (полевой угол), а Ψ — азимутальный угол

луча зрения (т.е. $(\Phi - \Psi)$ представляет собой угол между проекциями на земную поверхность траектории частицы и луча зрения). Для малых полевых углов $\gamma \ll \Theta$ (узкопольный детектор или наблюдение вблизи центра поля зрения) получаем $\beta \approx \Theta$. В простейшем случае, когда плоскость "Детектор-Траектория источника" перпендикулярна поверхности земли, $(\Phi - \Psi) = 0^{\circ}$ или 180° в зависимости от того к центру поля зрения движется источник или от него. Это соответствует предельным вариантам $\beta = \Theta + \gamma u \beta = \Theta - \gamma$. В более общем случае целесообразно провести разложение по γ как малому параметру ($\gamma < \gamma_{max} = 4.5^{\circ} = 0.079$ рад), при этом $\beta \approx \Theta + \gamma cos(\Phi - \Psi)$.

Таким образом, при фиксированных v, Θ и Φ в первом приближении можно считать, что угловая скорость ω в (1) со временем не меняется.

Движение в картинной плоскости проецируется оптикой детектора в виде динамически меняющегося изображения на фокальной поверхности (ФП). Характер изменений изображения определяется, в том числе, и направлением прихода релятивистской частицы. В частности, угловую скорость перемещения источника излучения можно связать с линейной скоростью перемещения изображения по ФП. Точнее, в каждом мгновенном изображении необходимо выделить его центроид, тогда последовательные положения данной движущейся по ФП "точки" будут располагаться вдоль прямолинейной траектории – трека точки. Скорость перемещения точки по треку связана с угловой скоростью и фокусным расстоянием оптической системы детектора: $U = \omega f$.

Выберем локальную систему координат, связав ее с симметрией "квадратного" фотоприемника: начало координат поместим в центре $\Phi\Pi$, а оси *X* и *Y* сориентируем параллельно и перпендикулярно расположению модулей. В этом случае азимутальный угол Φ совпадет с азимутальным углом трека, т.е. $tg\Phi = U_x/U_y$. При определении зенитного угла учтем поправку к β для момента времени, соответствующего максимуму кривой свечения ("точка максимума"):

$$\Theta \approx \beta - \gamma_m \cos(\Phi - \Psi_m). \tag{3}$$

РЕКОНСТРУКЦИЯ НАПРАВЛЕНИЙ ПРИХОДА

Таким образом, реконструкция направления прихода релятивисткой частицы может быть определена как оценка параметров трека:

$$X(t) = X_0(t) + U_x(t - t_0), Y(t) = Y_0(t) + U_y(t - t_0),$$
(4)

где X(t), Y(t) – декартовые координаты центроида изображения ("точки") в момент времени t, (X_0, Y_0) – точка трека, соответствующая некоторому моменту времени t_0 . При этом проекции U_x , U_y скорости точки в локальной системе координат считаются не меняющимися во времени (равномерное движение).

Для оценки поправки (3) выделим на треке точку максимума и вычислим ее координаты X_m и Y_m . В этом случае $\gamma_m = \gamma_{pix} (X_m^2 + Y_m^2)^{1/2}/a$, а tg $\Psi_m =$ $= Y_m/X_m$. Тогда значения U_x , U_y однозначным образом связаны с интересующим нас направлением прихода, азимутальным и зенитным углами:

$$\Phi = \operatorname{arctg}(U_y/U_x),$$

$$\Theta = 2\operatorname{arctg}(\omega R/c) - \gamma_m \cos(\Phi - \Psi_m),$$
(5)

где $\omega = (U_x^2 + U_y^2)^{1/2}/f$, а расстояние *R* от детектора до источника излучения с достаточной точностью можно считать постоянным.

При использовании параметризации (4) важно помнить, что конечные размеры входных отверстий каналов (пикселей) приводят к огрублению информации с пространственным разрешением a = 15 мм, а конечное время накопления и считывания сигнала осуществляет дискретизации по времени с интервалом $\tau = 800$ нс. Кроме того, ввиду оптических аберраций реальное мгновенное изображение свечения ШАЛ не занимает один-единственный пиксель, а распределяется сразу по нескольким соседним.

В соответствие с этим в работе [3] был предложен простой эвристический метод, позволяющий оценивать параметры трека по его пикселизированным данным. Метод предполагает, что на предварительном этапе произведен отбор так называемых *сработавших* каналов, т.е. тех каналов фотоприемника, в которых присутствует сигнал от ШАЛ. Фактически в алгоритме осуществляется минимизация суммы квадратов отклонений координат сработавших пикселей от теоретической линейной интерполяции (4), отдельно по каждой из дискретной по времени зависимостей $X(t_k)$ и $Y(t_k)$, где $t_k = k\tau$, k = 1, ..., 256.

Однако последующий анализ данной эвристики на модельных примерах выявил его существенный недостаток: результаты минимизации сильно зависят от набора сработавших пикселей, особенно при наличии в них слабых сигналов (либо на концах кривой свечения, либо из-за размывания сигнала за счет ФРТ). В настоящей работе метод был модифицирован с тем, чтобы частично уменьшить этот нежелательный эффект. В предлагаемом алгоритме, получившем название LTA (от англ. Linear Track Algorithm), минимизируется двойная сумма

$$\Sigma_i \Sigma_k W_i(t_k) (X_0 + t_k U_x - X_i)^2 \tag{6}$$

Рис. 1. Гистограммы ошибок реконструкции по методу LTA для модельных событий ($\Theta = 30^\circ$, Φ равномерно распределено), слева – для азимутального угла, справа – зенитного.

по параметрам X_0 и U_x (и аналогично по Y_0 и U_y с коэффициентами Y_i). Здесь X_i , Y_i — координаты центра *i*-го сработавшего пикселя, а $W_i(t_k)$ — соответствующий вес, пропорциональный величине сигнала в данном пикселе в момент времени t_k (см. далее).

ΔΦ

Первая сумма в (6) пробегает по всем сработавшим каналам, а вторая - по так называемому временному "окну активности", $k \in [k_1(i), k_2(i)]$. Введением такого временного окна удается уменьшить влияние на реконструкцию статистических флуктуаций в коде АЦП. Для этого сигнал каждого сработавшего канала (за вычетом базового уровня) предварительно аппроксимируется гауссовым и определяются моменты k_1 и k_2 , в которые этот аппроксимирующий сигнал первый и последний раз достигает определенного значения. Подбор оптимального значения этого порогового параметра (выраженного в долях от значения в максимуме), приводящего к наиболее устойчивым вариантам реконструкции, был произведен на модельных примерах. По той же причине веса $W_i(t_k)$ связывались не с исходным, флуктуирующим сигналом (как в оригинальной методике [3]), а с его гауссовой аппроксимацией.

Как уже было отмечено, по своей сути предлагаемый метод реконструкции является эвристическим. Для успешного его применения в ходе восстановления параметров реальных событий детектора "ТУС" (примеры таких событий-кандидатов приведены в [4], а реконструкция методом LTA одного из них — в готовящейся к публикации работе) необходимо провести анализ его точности на модельных примерах.

3. ПРОВЕРКА МЕТОДА

 $\Delta \Theta$

Для проверки метода LTA был написан пакет программ в среде MATLAB, позволяющий создавать так называемое "гауссово событие" (с интенсивностью свечения. меняюшейся во времени по гауссовому закону, с распределением энергии по отдельным каналам в соответствие с гауссовой функцией рассеяния точки и добавлением гауссового шума), формировать список сработавших каналов (отбирая каналы, сглаженный сигнал которых превосходит пороговое значение) и определять их окна активности (аппроксимируя флуктуирующий сигналу гауссовой функцией). В результате была поставлена задача подбора оптимальных значений управляющих методом параметров (порог отбора каналов и порог активности) и оценка точности реконструкции при этих значениях. Эта задача исследовалась для центра фотоприемника, когда различием углов Θ и β можно пренебречь, расстояние *R* считалось известным и равным 500 км.

Распределение ошибок (разницы между реконструируемыми значениями параметров Φ и Θ и их значениями, соответствующим исходным U_x и U_y) для направлений $\Theta = 30^{\circ}$ приведено на рис. 1 для основной части поля зрения и низкого значения уровня шума. В качестве меры неточности метода удобно выбрать стандартные отклонения этих распределений: $\sigma_{\Phi} = 5.3^{\circ}$, $\sigma_{\Theta} = 1.7^{\circ}$. Результаты для более сложных сценариев, на краю поля зрения и/или с увеличенным в 2 раза уровнем шума, представлены в таблице 1.

ШАРАКИН

Таблица 1. Точность реконструкции направления прихода для двух вариантов ФРТ (соответствующих центру и периферии поля зрения) и двух уровней гауссового шума. Приведены стандартные отклонения для азимутального и зенитного углов, а также характерная величина угла Δα между реконструируемым направлением прихода и исходным

	Центр поля зрения		Край поля зрения	
Уровень шума	низкий	высокий	низкий	высокий
$\overline{\sigma_{\Phi}}$, $^{\circ}$	4.7	5.2	4.2	9.4
σ_Θ , $^\circ$	2.4	2.6	2.6	3.6
$\Delta \alpha$, °	3.0 ± 1.5	3.4 ± 2.0	3.1 ± 1.4	5.3 ± 2.5

ЗАКЛЮЧЕНИЕ

На сегодняшний день в базе данных событий. зарегистрированных детектором "ТУС", идентифицировано несколько событий с характерной для ШАЛ пространственно-временной структурой развития свечения. Определение направления прихода таких событий представляет собой важную часть задачи реконструкции. В данной работе был прелложен олин из способов опрелеления направления прихода и показана его состоятельность на простейших модельных примерах. Следует отметить, что полученные ошибки метода являются нижними оценками, не учитывающими ряда дополнительных неопределенностей (форма ФРТ, распределение чувствительности каналов и проч.). Более полный анализ данного метода, его применение к отобранным событиям "ТУС", а также сравнение с байессовскими подходами [5] будут приведены в другой работе.

Работа выполнена при поддержке грантом РФФИ 16-29-13065-офи-м, финансировании Госкорпорации по космической деятельности РОСКОСМОС и поддержке Программой развития МГУ.

СПИСОК ЛИТЕРАТУРЫ

- 1. Klimov P.A., Panasyuk M.I., Khrenov B.A. et al. // Space Sci. Rev. 2017. V. 8. P. 1.
- Khrenov B.A., Klimov P.A., Panasyuk M.I. et al. // J. Cosmol. Astropart. Phys. 2017. V. 2017. № 9. P. 006.
- Tkachev L., Lomonosov–UHECR/TLE Collaboration // Proc. 35th ICRC. (Busan, 2017). P. 527.
- 4. Biktemerova S.V., Botvinko A.A., Chirskaya N.P. et al. // arXiv: 1706.05369. 2017.
- 5. *Sivia D., Skilling J.* Data Analysis: A Bayesian Tutorial. Oxford: OUP Oxford, 2006.

1124