УДК 539.142.3

МНОГОЧАСТИЧНЫЕ ВЗАИМОДЕЙСТВИЯ В ЯДЕРНОЙ МАТЕРИИ

© 2019 г. Е. Г. Друкарев¹, М. Г. Рыскин¹, В. А. Садовникова^{1, *}

¹Федеральное государственное бюджетное учреждение "Петербургский институт ядерной физики имени Б.П. Константинова Национального исследовательского центра "Курчатовский институт",

Гатчина, Россия *E-mail: sadovnik@thd.pnpi.spb.ru Поступила в редакцию 12.11.2018 г. После доработки 08.04.2019 г. Принята к публикации 27.05.2019 г.

Исследовано влияние трехнуклонных и четырехнуклонных сил на характеристики нуклона в симметричной ядерной материи с использованием метода правил сумм при конечной плотности. Подход, в рамках которого материя рассматривается как система нуклонов в "пионных шубах" (т.е. однопионные и итерированные однопионные обмены включаются в описание одночастичных состояний), позволяет получить строгую иерархию многочастичных сил.

DOI: 10.1134/S0367676519090047

ВВЕДЕНИЕ

В этой работе мы продолжаем изложение наших результатов по исследованию многочастичных взаимодействий в ядерной материи. Используется метод правил сумм квантовой хромодинамики (КХД) при конечной плотности, основы которого описаны в обзоре [1] (о правилах сумм КХД в вакууме см. книгу [2]). В нашей предыдущей работе [3] мы приводим основные формулы, используемые при вычислениях. Напомним только, что метод основан на дисперсионных соотношениях для поляризационного оператора, описывающего распространение системы с квантовыми числами протона. В правой части дисперсионных соотношений мы выделяем нуклонный (протонный) полюс, соответствующий пробному нуклону, а высшие реальные состояния описываем конти-

нуумом с эффективным порогом W_m^2 . Параметры нуклона в материи: эффективная масса m^* и векторная собственная энергия Σ_V являются решением системы уравнений.

$$\frac{\mathscr{L}^{I}(M^{2}, W_{m}^{2})}{\mathscr{L}^{q}(M^{2}, W_{m}^{2})} = m^{*}; \quad \frac{\mathscr{L}^{P}(M^{2}, W_{m}^{2})}{\mathscr{L}^{q}(M^{2}, W_{m}^{2})} = -\frac{\Sigma_{V}}{m}, \quad (1)$$

где m — масса свободного нуклона, $\mathcal{L}^{i}(i = q, P, I)$ — три структуры поляризационного оператора, подвергнутые преобразованию Бореля (см. формулу (6) в [3]).

Функции \mathscr{L}^{\prime} зависят от средних значений операторов КХД в ядерной материи, называемых конденсатами. Зная зависимость параметров конденсата от плотности среды ρ , мы можем, таким образом, найти зависимость от плотности характеристик пробного нуклона. Как и в случае вакуума, предполагается, что роль конденсатов уменьшается с увеличением их размерности. Поэтому наиболее важны векторный и скалярный конденсаты $v(\rho) = \langle M | \sum_i \overline{q}^i \gamma_0 q^i | M \rangle$ и $\varkappa(\rho) = \langle M | \sum_i \overline{q}^i q^i | M \rangle$. Здесь q^i – кварковые операторы, индекс *i* соответствует *u* и *d* кваркам, $| M \rangle$ – основное состояние материи. Векторный конденсат записан в системе покоя материи.

Пока мы ограничиваемся конденсатами с d = 3, структуры \mathcal{L}^q и \mathcal{L}^P зависят от векторного конденсата и не зависят от $\varkappa(\rho)$. В свою очередь \mathcal{L}^I зависит только от скалярного конденсата. Если пренебречь малым отличием величины порога W_m^2 от вакуумного значения W_0^2 [4], то два уравнения (1) становятся независимыми. В этом приближении векторная собственная энергия Σ_V не зависит от скалярного конденсата $\varkappa(\rho)$. Поэтому в точном решении мы ожидаем слабой зависимости Σ_V от скалярного конденсата, в то время как эффективная масса m^* почти полностью им определяется.

Векторный конденсат легко вычисляется: $v(q) = n_v \rho$, где $n_v - число$ валентных кварков в нуклоне $(n_v = 3)$. Однако нахождение скалярного конденсата требует модельных представлений для $|M\rangle$. Построению такой модели и посвящена настоящая работа.

Рис. 1. Фейнмановские диаграммы, описывающие однопионный (*a*) и итерированный однопионный (*б*) обмены между нуклонами материи *1* и *2*. Сплошные линии соответствуют нуклонам, пунктирные – пионам.

1. НУКЛОНЫ В "ПИОННЫХ ШУБАХ"

В качестве первого шага состояние $|M\rangle$ обычно представляют как систему нерелятивистских невзаимодействующих нуклонов (газовое приближение). В этом случае отличие скалярного конденсата от вакуумного значения $\varkappa(0)$ определяется суммой вкладов отдельных нуклонов $\varkappa_N = \langle N | \sum_i \overline{q}^i q^i | N \rangle$, где $|N\rangle$ – вектор состояния свободного покоящегося нуклона. Этот матричный элемент просто выражается через нуклонный сигма-член σ_N , связанный с наблюдаемыми. Таким образом,

$$\kappa(\rho) = \kappa(0) + \kappa_N \rho;$$

$$\kappa_N = \left\langle N \left| \sum_i \overline{q} q \right| N \right\rangle = \frac{2\sigma_N}{m_u + m_d},$$
 (2)

где $m_{u,d}$ — массы легких кварков; $\varkappa(0) = \langle N | \sum_i \bar{q}q | N \rangle \approx 2(-240 \text{ МэВ})^3$ [2]. Обычно полагают $\sigma_N = 45 \text{ МэВ}$, однако, некоторые экспериментальные данные совместимы со значениями сигма-члена в интервале $35 \le \sigma_N \le 70 \text{ МэВ}$. Отметим, что структурам \mathscr{L}^i в газовом приближении соответствует пробный нуклон, взаимодействующий с каждым нуклоном среды по отдельности. То есть мы вычисляем характеристики пробного нуклона с учетом только двухчастичных взаимодействий.

На следующем этапе мы учитываем взаимодействие нуклонов в состоянии $|M\rangle$, предполагая, что оно происходит путем обмена мезонами. Нам нужно учесть вклад общего мезонного облака в конденсат $\varkappa(\rho)$. Основная часть вклада определяется пионами [1]. Это связано с тем, что при разумных предположениях о виде кварковой волновой функции матричный элемент $\langle h | \sum_i \bar{q}q | h \rangle$ представляет собой суммарное число кварков и антикварков $n_{\bar{q}q}$ в адроне h. Поэтому для мезонов следует ожидать $n_{\bar{q}q} = 2$, в то время как для пионов

Рис. 2. Фейнмановские диаграммы, описывающие вклады в одночастичную собственную энергию нуклона *1* однопионного и итерированного однопионного обменов. По состояниям *2* производится суммирование. Рис. *а* соответствует диаграмме рис. 1*a*, рис. *б* – диаграмме рис. 1*b*. Обозначения те же, что на рис. 1.

 $n_{\bar{q}q} = m_{\pi}/(m_u + m_d) \approx 12$, что объясняется большим числом "морских" кварк-антикварковых пар.

Таким образом, нужно учесть вклад пионных взаимодействий в вектор состояния $|M\rangle$. Учету двухчастичных взаимодействий будет соответствовать учет трехчастичных взаимодействий в характеристиках пробного нуклона m^* и Σ_V . Включение трехчастичных взаимодействий в состоянии $|M\rangle$ приведет к учету четырехчастичных взаимодействий в характеристиках нуклонов, и т.д. Вклады однопионного и двухпионных взаимодействий в скалярный конденсат вычислены в [5] с использованием киральной теории возмущений.

Заметим, что интерпретация однопионного взаимодействия не является однозначной. Обмен пионами между нуклонами среды с трехмерными импульсами p₁ и p₂ выражается фейнмановской диаграммой, изображенной на рис. 1а. Только обменный (фоковский) член дает ненулевой вклад. Прямой (хартриевский) член равен нулю, так как пион-нуклонная вершина пропорциональна импульсу, передаваемому пионом. Обычно этот вклад включается в двухчастичное взаимодействие. Однако он может быть представлен как собственная энергия нуклона в среде (см. рис. 2а). Диаграмма, изображенная на рис. 2а с интегрированием по трехмерному импульсу промежуточного нуклона р от 0 до ∞ , уже учтена в одночастичной функции нуклона с импульсом p_1 . Однако в среде состояния с импульсами $p_2 < p_F$, где p_F – импульс Ферми, заняты, и этот вклад необходимо вычесть. Интеграл по энергиям может быть выражен через вычет в полюсе нуклонного пропагатора, и вклад диаграммы рис. 26 соответствует диаграмме рис. 1*a*, просуммированной по всем импульсам $p_2 < p_F$. То же относится к итерированному однопионному обмену, описываемому диаграммой рис. 16 [6]. Ему соответствует диаграмма собственной энергии, изображенная на рис. 2б.

Если пренебречь всеми взаимодействиями, кроме однопионного и итерированного однопионного обменов, то получится система невзаимодействующих нуклонов, каждый из которых обладает своей "пионной шубой" ("квазисвободные нуклоны"). Для такой системы можно написать аналог формулы (2)

$$\varkappa(\rho) = \varkappa(0) + \hat{\varkappa}(\rho), \tag{3}$$

где

$$\hat{\varkappa}(\rho) = \varkappa_{\rm N} \rho + \varkappa^{(1)}; \quad \varkappa^{(1)} = \left\langle \pi \left| \sum_{i} \overline{q} q \right| \pi \right\rangle f^{(1)}(\rho). \quad (4)$$

Среднее значение по пиону обычно записывают как $\langle \pi | \sum_i \bar{q}q | \pi \rangle = 2m_\pi m_\pi / (m_u + m_d)$, где m_π – масса пиона. Множитель $2m_\pi$ получается в результате выделения нормировочных факторов $(2m_\pi)^{-1/2}$ в векторах состояний пионов. Функция $f^{(1)}(\rho)$ может быть найдена как производная по m_π^2 суммы плотностей энергий однопионного и итерированного однопионного обменов [5]. Последнее утверждение иллюстрируется диаграммой рис. 3. Более строгое доказательство основано на теореме Гельмана–Фейнмана (Hellman–Feynman). Появление "пионной шубы" заметно меняет величину $\varkappa_N(\rho)$. Так, при $\sigma_N = 45$ МэВ находим $\varkappa_N = 8.2$. Записав $\kappa^{(1)}(\rho) = \kappa_N^{(1)}(\rho)\rho$, при феноменологическом значении равновесной плотности $\rho_0 = 0.17 \, \text{фm}^{-3}$ получаем $\hat{\varkappa}_N(\rho) = 11.4$.

Скалярный конденсат с учетом двухчастичных (2N) взаимодействий в состоянии $|M\rangle$ в нашем представлении

$$\hat{\varkappa}(\rho) = \varkappa_{N}\rho + \varkappa^{(1)} + \varkappa^{(2)}; \varkappa^{(2)} = \left\langle \pi \left| \sum_{i} \overline{q} q \right| \pi \right\rangle f^{(2)}(\rho),$$
(5)

где $f^{(2)}(\rho)$ – производная по m_{π}^2 – суммы плотностей энергий двухчастичных пионных обменов, не включающих однопионный и итерированный однопионный обмены [5]. Правила сумм с учетом 2N взаимодействий в скалярном конденсате определяют характеристики пробного нуклона с учетом 3N сил. Аналогично конденсат с учетом трехчастичных взаимодействий в состоянии $|M\rangle$

$$\hat{\varkappa}(\rho) = \varkappa_{\scriptscriptstyle N} \rho + \varkappa^{(1)} + \varkappa^{(2)} + \varkappa^{(3)}$$
$$\varkappa^{(3)} = \left\langle \pi \left| \sum_{i} \overline{q} q \right| \pi \right\rangle f^{(3)}(\rho).$$

Правила сумм с таким конденсатом определяют характеристики пробного нуклона с учетом 4N сил.

Отметим, что в обычном (стандартном) представлении при учете многочастичных сил несколько механизмов дают большие, частично компенсирующиеся вклады в скалярный кон2

МНОГОЧАСТИЧНЫЕ ВЗАИМОДЕЙСТВИЯ В ЯДЕРНОЙ МАТЕРИИ

Рис. 3. Фейнмановская диаграмма, иллюстрирующая на примере однопионного обмена формулу (4). Жирные линии обозначают оператор $\bar{q}q$. Остальные обозначения такие же, как на рис. 1, 2.

денсат. В нашем представлении можно выделить один ведущий вклад – двухпионный обмен, содержащий Δ – изобару в промежуточном состоянии.

2. РЕЗУЛЬТАТЫ

Записав $\varkappa(\rho) = \varkappa(0) + (\kappa_N^{(1)}(\rho) + \kappa_N^{(2)}(\rho) + \kappa_N^{(3)}(\rho))\rho$, где второе и третье слагаемые в скобках соответствуют учету 2N и 3N взаимодействий в состоянии $|M\rangle$, найдем, что $\kappa_N^{(1)}(\rho) > \kappa_N^{(2)}(\rho) > \kappa_N^{(3)}(\rho)$. Так как эффективная масса определяется в основном скалярным конденсатом, ожидаем получить строгую иерархию вкладов многочастичных сил в m^* . Векторная собственная энергия определяется в основном векторным конденсатом. Вклад в многочастичные силы дают также конфигурации четырехкварковых конденсатов (d = 6), в которых две пары кварковых операторов действуют на два разных нуклона среды. При этом скалярно-скалярный конденсат, пропорциональный $\hat{\chi}^2$, дает

вклад в структуру \mathscr{L}^q , непосредственно влияя на величину Σ_V . Таким образом, мы предполагаем получить строгую иерархию и для вкладов в Σ_V .

Непосредственный расчет подтверждает эти оценки. Для $\rho = \rho_0$ мы получаем $m^* = 433$ МэВ при учете только 2N сил. Таким образом, $\Sigma_S = m^* - m \approx -500$ МэВ, отличаясь почти на 150 МэВ от величины, получаемой в обычном представлении. Трехчастичные силы прибавляют к этой величине 174 МэВ, а 4N силы — еще 24 МэВ. Век-

1

ДРУКАРЕВ и др.

Таблица 1. Зависимость нуклонных характеристик от плотности. Для каждого значения ρ/ρ_0 верхняя строка показывает параметры пробного нуклона в системе нуклонов, одетых "пионными шубами" с учетом только 2*N* сил. Вторая и третья строка соответствуют учету 3*N* и 4*N* сил

$ ho/ ho_0$	<i>m</i> *, МэВ	Σ_V , МэВ	U, MəB
0.90	509	182	—237
	646	167	—116
	664	173	—92
0.95	472	195	-262
	627	175	—127
	648	182	—98
1.00	433	207	-288
	607	183	—138
	631	192	—105
1.05	392	221	—316
	587	191	—150
	613	202	—112
1.10	347	235	—347
	567	199	—162
	595	212	—129

Рис. 4. Зависимость от плотности эффективной нуклонной массы m^* , векторной собственной энергии Σ_V и одночастичного потенцияла U. На горизонтальной оси отложено отношение плотности материи ρ к равновесной плотности ρ_0 . Точечные кривые – расчет с учетом двухчастичных взаимодействий нуклонов материи; штриховые кривые – с учетом 2N и 3N взаимодействий; сплошные кривые – с учетом 2N, 3N и 4N взаимодействий.

торная собственная энергия $\Sigma_V = 207 \text{ МэВ}$ при учете только 2*N* сил. Учет 3*N* сил уменьшает векторную собственную энергию на 24 МэВ, а включение 4*N* сил увеличивает на 11 МэВ.

На рис. 4 приведена зависимость от плотности нуклонных параметров. Здесь же показана одночастичная потенциальная энергия $U = \Sigma_S + \Sigma_V =$ $= m^* + \Sigma_V - m$. Более детально вблизи равновесной плотности ρ_0 эта зависимость приведена в табл. 1.

СПИСОК ЛИТЕРАТУРЫ

- Drukarev E.G., Ryskin M.G., Sadovnikova V.A. // ЯФ. 2011. Т. 74. С. 1; Drukarev E.G., Ryskin M.G., Sadovnikova V.A. // Phys. Atom. Nucl. 2012. V. 75. P. 334.
- Ioffe B.L., Lipatov L.N., Fadin V.S. Quantum chromodynamics. Cambridge: Cambridge Univ. Press, 2010. 596 p.
- Друкарев Е.Г., Рыскин М.Г., Садовникова В.А. // Изв. РАН. Сер. физ. 2017. Т. 81. С. 1334; Drukarev E.G., Ryskin M.G., Sadovnikova V.A. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. P. 1192.
- 4. Drukarev E.G., Ryskin M.G., Sadovnikova V.A. // Nucl. Phys. A. 2017. V. 959. P. 129.
- Kaiser N., de Homont P., Weise W. // Phys. Rev. C. 2008. V. 77. Art. № 025204.
- Kaiser N., Fritsch S., Weise W. // Nucl. Phys. A. 2002. V. 697. P. 255.