УДК 537.31

МЕХАНИЗМЫ ЭЛЕКТРОПРОВОДНОСТИ В СМЕСЕВОМ МАГНИТОЭЛЕКТРИЧЕСКОМ КОМПОЗИТЕ (x)Mn_{0.4}Zn_{0.6}Fe₂O₄-(1 - x)PbZr_{0.53}Ti_{0.47}O₃

© 2019 г. А. В. Калгин^{1, 2, *}

¹Федеральное государственное бюджетное образовательное учреждение "Воронежский государственный технический университет", Воронеж, Россия ²Федеральное государственное бюджетное образовательное учреждение "Воронежский государственный университет", Воронеж, Россия *E-mail: kalgin_alexandr@mail.ru Поступила в редакцию 12.11.2018 г. После доработки 29.03.2019 г.

После доработки 29.03.2019 г. Принята к публикации 27.05.2019 г.

На частотах от 2 до 50 кГц в интервале температур 290–670 К изучена электропроводность смесевого магнитоэлектрического композита (x)Mn_{0.4}Zn_{0.6}Fe₂O₄–(1 – x)PbZr_{0.53}Ti_{0.47}O₃ с x = 0.6, 0.8 и 1.0. Выявлено, что с ростом температуры в композите происходит смена механизма электропроводности от прыжков поляронов малого радиуса к зонному переносу носителей заряда.

DOI: 10.1134/S0367676519090102

введение

Смесевые магнитоэлектрические (МЭ) композиты, имеющие возможность взаимно преобразовывать магнитное и электрическое поля (МЭ-эффект), активно изучаются в последние годы, а наиболее эффективные среди них перспективны для разработок устройств нового поколения. Чтобы получить МЭ-эффект большой величины, фазы смесевых композитов должны быть в химическом равновесии, иметь низкую электропроводность, обладать высокими магнитострикционными и пьезоэлектрическими коэффициентами, а их зерна должны находиться в хорошем механическом контакте между собой. Поскольку величина МЭ-эффекта определяется проводимостью композитов, выявление механизмов транспорта носителей заряда в смесевых композиционных МЭ-материалах представляет собой одну из основных задач, стоящих перед современной физикой твердого тела.

Для выявления механизмов электропроводности в неупорядоченных средах обычно изучают зависимости электропроводности σ от температуры *Т*. Очень часто такие зависимости при температурах выше комнатной подчиняются активационному закону [1]:

$$\sigma = \sigma_0 \exp(-E_{\sigma}/kT), \qquad (1)$$

где σ_0 — постоянная величина для данного материала, E_{σ} — энергия активации электропроводности и k — постоянная Больцмана.

Зависимость вида (1) по интерпретации Мотта может быть связана с переносом заряда по локализованным состояниям хвостов зон проводимости и валентной зоны, локализованным состояниям вблизи уровня Ферми и нелокализованным состояниям.

Однако существует группа неупорядоченных материалов, для которых температурные зависимости проводимости в широком интервале температур можно описать другим, не аррениусовским законом.

Если проводимость материала связана с однофононным характером перескоков носителей заряда (поляронов) между состояниями, ее зависимость от температуры подчиняется обратному закону Аррениуса [2]:

$$\sigma = \sigma_0 \exp(T/\alpha^{-1}T_0). \tag{2}$$

Здесь $\alpha \ge 1$ и T_0 – постоянные величины для данного материала.

Этот механизм присущ неполярным материалам, где поляронные эффекты незначительны.

Для полярных материалов, где поляронные эффекты являются доминирующими, проводимость определяется многофононными переходами поляронов из одного состояния в другое и зависит от температуры по закону [2]

$$\sigma = \sigma_0 T^n. \tag{3}$$

Здесь *п* – показатель степени.

Рис. 1. Зависимости логарифма удельной электропроводности $\ln \sigma$ от температуры *T* при 2, 10, 20 и 50 кГц для композита (*x*)MZF-(1 - *x*)PZT с *x* = = 0.6 (*a*); 0.8 (*б*) и 1.0 (*в*).

Несмотря на большое количество работ, посвященных электрическим свойствам смесевых МЭ-композитов [3, 4] и моделям переноса носителей заряда в неупорядоченных материалах, до сих пор не рассматривались вопросы применимости моделей переноса носителей заряда к смесевым МЭ-композитам, хотя это необходимо с точки зрения определения механизмов проводимости в композиционных материалах.

Поэтому цель работы — установление закономерностей поведения, модельное описание и выявление природы проводимости смесевого МЭ-композита (x)Mn_{0.4}Zn_{0.6}Fe₂O₄-(1 - x)PbZr_{0.53}Ti_{0.47}O₃ [далее (x)MZF-(1 - x)PZT] в зависимости от частоты измерительного электрического поля и температуры.

МЕТОДИКА ИЗМЕРЕНИЙ И ОБРАЗЦЫ

Образцы смесевого композита (x)MZF--(1 - x)PZT (x = 0.6, 0.8 и 1.0) были получены спеканием смесей порошков феррита Mn_{0.4}Zn_{0.6}Fe₂O₄ (MZF) с точкой Нееля 473 K и сегнетоэлектрика PbZr_{0.53}Ti_{0.47}O₃ (PZT) с точкой Кюри 593 K в атмосфере воздуха в течение 5 ч при температуре, которая изменялась от 1443 до 1473 K, когда содержание порошка феррита в смеси x увеличивалось от 0.6 до 1.0 масс. долей.

Рентгенограммы, полученные на дифрактометре ДРОН-3 с использованием излучения Fe K_{α} и никелевого фильтра, и микрофотографии в растровом электронном микроскопе Quanta 2003D [5, 6] свидетельствуют о том, что композиты состоят только из исходных фаз (ферритовой и сегнетоэлектрической). Никакие посторонние компоненты не были выявлены. Образцы композитов имели размеры 8 × 4.5 × 1.5 мм³. Чтобы провести измерения электропроводности, на наибольшие поверхности образцов наносились электроды вжиганием серебряной пасты при 873 К в течение 30 мин.

Измерения электропроводности композита осуществляли на измерителе иммитанса E7-20 на частотах измерительного электрического поля 2, 10, 20 и 50 кГц при нагревании со скоростью 2 К/мин в интервале температур от 290 до 670 К. Для контроля температуры применялась хромель-алюмелевая термопара, погрешность измерения которой составляла не более ± 0.5 К.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Закономерности поведения электропроводности σ композита (*x*)MZF-(1 - x)PZT при изменении температуры *T* и частоты измерительного электрического поля *f* представлены на рис. 1.

Видно увеличение σ с *T*, которое обусловлено ростом концентрации носителей заряда. Так как проводимость композита с *x* = 1.0, 0.8 и 0.6 опре-

деляется проводимостью MZF [7], а основными носителями заряда в MZF являются электроны, то электроперенос через композит в основном осуществляется электронами.

Увеличение σ также происходит с возрастанием *x* в композите и объясняется замещением атомов Mn, Zn и Fe в MZF атомами Zr и Ti из PZT с большей валентностью [8], которое происходит во время приготовления образцов композита и приводит к появлению в MZF дополнительных электронов, принимающих участие в электропереносе. Возникшие атомы Zr и Ti в MZF обусловливают донорные уровни в запрещенной зоне феррита.

Для составов с x = 0.6 и 0.8 ниже T_C электропроводность слабо возрастает с частотой измерительного электрического поля f, в то время как выше T_C никакой частотной зависимости проводимости не наблюдается (рис. 1a, δ). Температура T_C соответствует точки Кюри в РZT, которая уменьшается с увеличением x в композите. Уменьшение сегнето-электрической точки Кюри связывается с замещением атомов Ti (с ионным радиусом $R_{Ti} = 0.064$ нм) атомами Fe большего радиуса (с $R_{Fe} = 0.067$ нм > R_{Ti}) [8].

Более того, на зависимостях $ln\sigma(T)$ имеют место изломы при температуре T_N , отвечающей точке Нееля в MZF. Обнаруженное смещение точки Нееля с ростом содержания *x* в (*x*)MZF–(1 - x)PZT объясняется легированием ферримагнитной компоненты композита атомами Pb и Zr, диффузионно переместившимися из сегнетоэлектрической компоненты в процессе высокотемпературного спекания образцов [8].

Как следует из рис. 2, зависимости проводимости композита от частоты измерительного электрического поля в двойных логарифмических координатах представляют собой прямые линии с разными углами наклона, т.е. подчиняются степенному закону

$$\sigma \sim f^s, \tag{4}$$

где *s* – показатель степени.

Зависимость типа (4) указывает на прыжковый механизм проводимости, состоящий в прыжках носителей заряда по локализованным состояниям либо с участием, либо без участия фононов [1]. Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (1]. Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (1]. Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (2). Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (2). Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (2). Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (2). Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (2). Поскольку зависимость $\ln \sigma$ от $\ln f$ для фононнов (2). Поскольку зависимость π в дрятичной, можно заключить, что проводимости — квадратичной, можно заключить, что проводимость композита определяется фононными переходами электронов (поляронов) из одного состояния в другое. Причем в транспорте участвуют поляроны малого радиуса, так как σ растет с f, а не уменьшается как в случае перемещения поляронов большого радиуса [9, 10].

Возрастание $\sigma(f)$ объясняется следующим образом. Тепловые движения электронов, локализация

Рис. 2. Частотные зависимости электропроводности композита (x)MZF-(1 - x)PZT при температуре 300 К.

которых определяется набором потенциальных минимумов и барьеров, во внешнем электрическом поле приводят к проводимости композита. В области низких частот пространственное движение электронов в почти постоянном поле ограничено потенциальными барьерами, дефектами структуры и границами раздела, которые препятствуют полному переносу электрических зарядов от электрода к электроду. По мере повышения частоты сначала одни, а затем другие электроны не успевают достигнуть мест своей локализации и дают вклад в проводимость.

Для проверки предположения о поляронном механизме проводимости композита экспериментальные данные на рис. 1, согласно выражению (3), были представлены в виде зависимостей $\ln \sigma$ от $\ln T$ (рис. 3), из которых по углам наклона полученных прямых линий находились величины показателя степени *n*.

Экспериментальные точки хорошо ложатся на прямую линию в температурной области от 290 К до T_N для состава с x = 1.0 и прямые линии в температурных областях от 290 К до T_N и от T_N до T_C для составов с x = 0.6 и 0.8. Оценка показателя *n* во всех температурных областях дает величины (см. табл. 1), близкие к величинам *n* для полярных материалов, в которых существенны поляронные эффекты [2].

Таблица 1. Показатель степени n при различных температурах для композита (x)MZF-(1 - x)PZT

Область	Содержание MZF в композите, <i>х</i>		
температур	0.6	0.8	1.0
от 290 К до <i>Т_N</i>	13.92	13.12	13.07
от T_N до T_C	11.35	12.02	—

Рис. 3. Температурные зависимости удельной электропроводности композита (x)MZF-(1 - x)PZT в двойных логарифмических координатах при частоте 10 кГц.

Следовательно, можно утверждать, что в интервалах температур, охватывающих частотные зависимости электропроводности, композиту свойственна поляронная проводимость.

Выше точки Нееля для состава с x = 1.0 и точки Кюри для составов с x = 0.6 и 0.8 электропроводность не зависит от частоты, а ее температурные зависимости становятся прямыми в координатах ln σ or 1/*T* (рис. 4) в соответствии с уравнением (1).

Это означает, что при $T > T_N$ для состава с x = 1.0и $T > T_C$ для составов с x = 0.6 и 0.8 имеет место зонный механизм проводимости, заключающийся в переходе электронов в зону проводимости с донорных уровней в запрещенной зоне MZF. Глубины залегания донорных уровней E_{σ} , найденные из углов наклона прямых линий на рис. 4, принимают значения 0.60, 0.54 и 0.44 эВ для составов с x = 0.6, 0.8 и 1.0 соответственно.

Работа выполнена при финансовой поддержке РНФ (проект № 17-72-20105).

Рис. 4. Температурные зависимости удельной электропроводности композита (x) MZF-(1 - x)PZT в аррениусовских координатах при частоте 10 кГц.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мотт Н., Дэвис Э.* Электронные процессы в некристаллических веществах. Т. 1. М.: Мир, 1982. 368 с.
- 2. Гудаев О.А., Малиновский В.К. // ФТТ. 1992. Т. 34. № 2. С. 548.
- Pandya R.J., Joshi U.S., Caltun O.F. // Proc. Mater. Sci. 2015. V. 10. P. 168.
- Azizar Rahman M., Gafur M.A., Akther Hossain A.K.M. // J. Magn. Magn. Mater. 2013. V. 345. P. 89.
- 5. Gridnev S.A., Kalgin A.V., Amirov A.A. et al. // Ferroelectrics. 2010. V. 397. P. 142.
- Kalgin A.V., Gridnev S.A. // Phys. Stat. Sol. B. 2018.
 V. 255. № 9. Art. № 1800112.
- 7. Гриднев С.А., Калгин А.В. // Альтернативная энергетика и экология. 2011. Т. 99. № 7. С. 37.
- Gridnev S.A., Kalgin A.V. // Phys. Stat. Sol. B. 2010. V. 247. № 7. P. 1769.
- 9. Austin I.G., Mott N.F. // Adv. Phys. 1969. V. 18. P. 41.
- Adler D., Feinleib J. // Phys. Rev. B. 1970. V. 2. № 8. P. 3112.