УДК 539.26

ТВЕРДОФАЗНЫЕ ПРЕВРАЩЕНИЯ В МНОГОСЛОЙНЫХ ПЛЕНКАХ (Co₄₀Fe₄₀B₂₀)₃₄(SiO₂)₆₆-ZnO (SnO₂, In₂O₃)

© 2019 г. Ю. Е. Калинин¹, А. В. Ситников¹, И. В. Бабкина^{1,} *, М. А. Каширин¹, В. А. Макагонов¹, О. В. Жилова¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет", Воронеж, Россия

**E-mail: ivbabkina@mail.ru* Поступила в редакцию 12.11.2018 г. После доработки 29.03.2019 г. Принята к публикации 27.05.2019 г.

Многослойные пленки $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/ZnO]_{112}$, $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/SnO_2]_{32}$ и $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/In_2O_3]_{92}$ с толщиной слоев порядка 1 нм получены методом ионно-лучевого распыления двух мишеней на вращающуюся подложку. Исследованы фазовые превращения при термической обработке пленок. В пленках с прослойками ZnO и In_2O_3 образуются соединения с бором: $Co_2FeO_2(BO_3)$ и $InBO_3$ соответственно. Состав образующихся соединений зависит от используемого оксидного полупроводника и соотношения толщин слоев.

DOI: 10.1134/S0367676519090114

введение

Твердофазные реакции в тонких пленках были и остаются объектом интенсивных исследований [1, 2]. Интерес исследователей к их изучению вызван прежде всего тем, что тонкие слои являются основой современной микроэлектроники. Твердофазные реакции в тонких пленках протекают при значительно меньших температурах, чем в массивных образцах. Продуктами твердофазных реакций могут быть не только соединения сегнетоэластиков, но и твердые растворы реагентов. возникающие в результате перемешивания слоев [3, 4]. Поиски оптимальных температур и времени термообработки, при которых протекают эти реакции, осуществляют исключительно опытным путем. Процессы, протекающие в твердофазных материалах, имеют ряд важных отличий от процессов, протекающих в жидкостях или газах. Эти отличия связаны, прежде всего, с существенно (на несколько порядков) более низкой скоростью диффузии в твердых телах, что препятствует усреднению концентрации компонентов в системе и, таким образом, приводит к пространственной локализации протекающих процессов, их изучение важно для понимания механизмов протекания этих реакций.

Во-вторых, твердофазные реакции в пленочных наноструктурах могут быть основным фактором, нарушающим работу электронных устройств, основой которых являются многослойные тонкопленочные элементы (ТПЭ). Фактором, нарушающим микроструктуру и фазовый состав ТПЭ и тем самым работоспособность устройств микроэлектроники на их основе, являются химические межслойные взаимодействия. Поэтому исследования твердофазных реакций (ТФР) в тонкопленочных объектах позволяют минимизировать потери от межслойных химических взаимодействий в устройствах микроэлектроники. В-третьих, твердофазные реакции в системе реагентов приводят к образованию сплавов и соединений, по своим свойствам отличающихся от свойств исходных элементов. Это обстоятельство все в большей степени используется при разработке новых технологий синтеза материалов.

Поскольку широкозонные оксидные полупроводники (ШОП) ZnO, SnO₂ и In₂O₃ являются перспективными материалами для создания элементной базы "прозрачной электроники", исследования многослойных структур с их слоями представляет особый интерес. Топология функциональных элементов на основе оксидных полупроводников предусматривает наличие областей, в которых образуются контакты как минимум трех соединений с различным элементным составом, например, широкозонный полупроводник, оксил кремния и металл. В этом случае возможно протекание ТХР с взаимным влиянием соприкасающихся фаз. Наличие бора в подложке, который имеет высокий коэффициент диффузии при температуре технологических процессов, также усложняет анализ возможных химических превращений в процессе твердофазных химических реакций.

Пленка	Толщина бислоя, мкм	Толщина п.п., нм	Толщина композита, нм
$[(C_{0}, F_{0}, B_{0}), (S_{0}, S_{0}), (Z_{0}, D_{0})]$	0.25	0.8	12
$[(CO_{40} C_{40} D_{20})_{34}(SO_{2})_{66}/ZO_{112}]_{112}$	0.25	1.2	1.2
	0.31	1.3	1.0
$[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/SnO_2]_{32}$	0.23	2.0	5.4
	0.44	6.4	6.7
$[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/In_2O_3]_{92}$	0.57	1.8	2.7

Таблица 1. Состав, толщина пленки и прослоек многослойных структур

С учетом вышесказанного в работе поставлена цель исследовать влияние термообработки на последовательность протекания твердофазных реакций и изменения фазового состава в многослойных пленках $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/ZnO]_{112},$ $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/SnO_2]_{32}$ и $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/In_2O_3]_{92}$ с наноразмерными толщинами слоев.

МЕТОДИКА ЭКСПЕРИМЕНТА

Многослойные пленки $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/ZnO]_{112},$ $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/SnO_2]_{32}$ и $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/In_2O_3]_{92}$ были получены методом ионно-лучевого распыления керамических мишеней ZnO (In_2O_3 , SnO_2) и составной мишени, которая представляла собой пластину сплава $Co_{40}Fe_{40}B_{20}$ размером $280 \times 80 \times 15$ мм и 13 навесок кварца (SiO_2) размером $80 \times 10 \times 2$ мм, равномерно расположенных на поверхности металла по методике, описанной в [5]. Пленки осаждались на кремниевую подложку ориентации (100). Параметры ис-

Анализ элементного состава пленки композита (Co₄₀Fe₄₀B₂₀)₃₄(SiO₂)₆₆ проводили энергодисперсионной рентгеновской приставкой Oxford INCA Energy 250 на сканирующем электронном микроскопе JEOL JSM-6380 LV. Структуру исследовали методом дифракции рентгеновских лучей на дифрактометре Bruker D2 Phaser ($\lambda_{CuK_{eq}} = 1.54$ Å) с применением программного обеспечения DIF-FRAC. EVA 3.0 с базой данных ICDD PDF Release 2012. Температурную обработку проводили в вакуумной камере при остаточном давлении газа 5 · 10⁻² Торр.

следуемых пленок представлены в табл. 1.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

В исходном состоянии пленки SnO_2 и [($Co_{40}Fe_{40}B_{20}$)₃₄(SiO_2)₆₆/ SnO_2]₃₂ имели аморфную структуру. Кристаллизация SnO_2 наблюдалась при термической обработке пленки при 400°С в течение 30 мин с образованием оксида олова тетрагональной кристаллической структуры группы симметрии *P*42/*mnm*. Композит кристаллизуется при отжиге 500°С в течение 30 мин с образованием сплава СоFе кубической структуры группы симметрии *Pm*-3*m*. Пленки In_2O_3 , ZnO при ионно-лучевом осаждении в исходном состоянии имеют кристаллическую структуру с кубической и гексагональной решеткой группы симметрии I213 и P6₃mc, соответственно.

Многослойные пленки $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/ZnO]_{112},$

[($Co_{40}Fe_{40}B_{20}$)₃₄(SiO₂)₆₆/SnO₂]₃₂ и [($Co_{40}Fe_{40}B_{20}$)₃₄(SiO₂)₆₆/In₂O₃]₉₂ в исходном состоянии имели аморфную структуру. Рентгенографические исследования в диапазоне углов 2 θ = $1^{\circ}-10^{\circ}$ выявили наличие интерференционных максимумов, положение которых коррелирует с толщинами бислоев исследуемых образцов. Это подтверждает наличие слоистой структуры пленок. Особенности на кривых малоугловой рентгеновской дифракции пропадают при термической обработке пленок, когда начинается их кристаллизация, что может быть связано с разрушением многослойной структуры исследуемых образцов.

Анализ дифрактограмм пленок $[(Co_{40}Fe_{40}B_{20})_{34}$ (SiO₂)₆₆/ZnO]₁₁₂ после термической обработки показал (рис. 1), что процесс кристаллизации в них начинается при отжиге 400–450°C в течение 30 мин и зависит от толщины прослоек. Так, более тонкие пленки имеют меньшую стабильность аморфной фазы. Изменение продуктов реакции удобно представлять в виде линейной диаграммы, где указывается температура обработки, выявленные кристаллические фазы и относительное изменение их концентрации в объеме образца (\uparrow – увеличение) (\downarrow – уменьшение). Так, превращения в пленке толщиной 0.25 мкм:

аморфный
$$\frac{400^{\circ}C}{\Rightarrow}$$
 CoFe; Fe₃O₄ $\frac{450^{\circ}C}{\Rightarrow}$ CoFe[†];
Fe₃O₄[†]; ZnO $\frac{500^{\circ}C}{\Rightarrow}$ CoFe[‡];
Fe₃O₄[†]; ZnO $\uparrow \frac{550^{\circ}C}{\Rightarrow}$ CoFe[‡]; Fe₃O₄[†];
Co₂FeO₂(BO₃); ZnO[†] $\frac{600^{\circ}C}{\Rightarrow}$ Fe₃O₄[†];
Co₂FeO₂(BO₃)[†]; ZnO[†]; Zn₂SiO₄.

Рис. 1. Дифрактограммы пленок $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/ZnO]_{112}$ толщиной 0.31 мкм после отжига при температурах: $1 - 450, 2 - 500, 3 - 550, 4 - 600^{\circ}C$ в течение 30 мин.

Последовательность фазовых превращений для образца толщиной 0.31 мкм:

аморфный
$$\frac{450^{\circ}C}{\Rightarrow}$$
 CoFe; Fe₃O₄;
ZnO $\frac{500^{\circ}C}{\Rightarrow}$ CoFe \downarrow ; Fe₃O₄↑; Fe₂O₃;
ZnO $\uparrow \frac{550^{\circ}C}{\Rightarrow}$ CoFe \downarrow ; Fe₃O₄↑;
Co₂FeO₂(BO₃); ZnO↑; Zn₂SiO₄ $\frac{600^{\circ}C}{\Rightarrow}$ Fe₃O₄↑;
Co₂FeO₂(BO₃)↑; ZnO↑; Zn₂SiO₄↑.

Кристаллическая структура и пространственная группа симметрии выявленных фаз представлена в табл. 2.

В данном случае мы видим образование двух сложных соединений Zn_2SiO_4 и $Co_2FeO_2(BO_3)$, первое из которых связано с взаимодействием оксидов цинка и диэлектрической матрицы композита, второе образуется при окислении металлической фазы композита и бора. Не наблюдаются соединения оксида цинка и металлическая фаза нанокомпозита ($Co_{40}Fe_{40}B_{20}$)₃₄(SiO₂)₆₆.

Анализ дифрактограмм пленок $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/SnO_2]_{32}$ после термической обработки показал (рис. 2), что процесс кри-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 9 2019

сталлизации в них начинается при отжиге 400°С в течение 30 мин. Последовательность фазовых превращений для образца толщиной 0.23 мкм:

аморфный
$$\frac{400^{\circ}C}{\Rightarrow}$$
 Fe₃O₄; Co₂Sn $\frac{450^{\circ}C}{\Rightarrow}$ Fe₃O₄;
Co₂Sn $\frac{500^{\circ}C}{\Rightarrow}$ Fe₃O₄↑; Co₂Sn↓; CoSn;
SnO₂ $\frac{550^{\circ}C}{\Rightarrow}$ Fe₃O₄↑; Co₂Sn↓; CoSn↑;
SnO₂↑ $\frac{600^{\circ}C}{\Rightarrow}$ Fe₃O₄↑; CoSn; SnO₂.

Последовательность фазовых превращений для образца толщиной 0.44 мкм:

аморфный
$$\frac{400^{\circ}C}{\Rightarrow}$$
 Co_{2.85}Sn₂;
SnO₂ $\frac{450^{\circ}C}{\Rightarrow}$ Co_{2.85}Sn₂; CoSn;SnO₂ $\uparrow \frac{500^{\circ}C}{\Rightarrow}$ Fe₃O₄;
Co_{2.85}Sn₂; CoSn[†]; SnO₂ $\uparrow \frac{550^{\circ}C}{\Rightarrow}$ Fe₃O₄[†];
Co_{2.85}Sn₂; CoSn; SnO₂ $\uparrow \frac{600^{\circ}C}{\Rightarrow}$ Fe₃O₄[†];
Co_{2.85}Sn₂[↓]; SnO₂.

Соединение	Структура	Группа симметрии	Параметры решетки, Å
ZnO	Гексагональная	P6 ₃ mc	a = 3.249 c = 5.204
SnO ₂	Тетрагональной	P42/mnm	a = 4.724 c = 3.187
In ₂ O ₃	Кубическая	<i>I</i> 213	a = 10.068
SiO ₂	Гексагональная	<i>R</i> -31 <i>c</i>	a = 8.123 c = 7.051
Fe ₃ O ₄	Орторомбическая	Pmc21	a = 5.934 b = 5.925 c = 16.752
Co ₂ FeO ₂ (BO ₃)	Орторомбическая	Pbam	a = 9.325 b = 12.268 c = 3.031
Zn ₂ SiO ₄	Ромбоэдрическая	<i>R</i> 3	a = 13.938 c = 9.310
Co ₂ Sn	Гексагональная	P63/mmc	a = 4.097 c = 5.180
CoSn	Гексагональная	R6/mmm	a = 5.279 c = 4.258
Co _{2.85} Sn	Орторомбическая	Pnma	a = 7.059 b = 5.213 c = 8.189
InBO ₃	Ромбоэдрическая	<i>R</i> -3 <i>c</i>	a = 4.822 c = 15.438
InFeO ₄	Ромбоэдрическая	<i>R</i> -3 <i>m</i>	a = 3.382 c = 25.557
CoFe	Кубическая	Pm-3m	a = 2.857
In	Тетрагональная	I4/mmm	a = 3.252 c = 4.951

Таблица 2. Кристаллическая структура, пространственная группа симметрии и параметры кристаллической решетки выявленных фаз

Здесь мы наблюдаем полную инертность диэлектрической матрицы SiO₂, так как SiO₂ не образует с SnO₂ твердых растворов и соединений [6]. С другой стороны, обнаружены соединения Co₂Sn, CoSn и Co_{2.85}Sn₂, возможность синтеза которых подразумевает восстановление оксида олова. Единственным восстановителем в данной системе с энергией разрыва связи (151 ккал/моль) большей, чем у SnO (126 ккал/моль) и отрицательной энтальпией образования (–201 ккал/моль) является B₂O₃ [7]. Причем в пленках толщиной 0.44 мкм наблюдается большая концентрация олова в соединении (Co_{2.85}Sn₂), чем у более тонких. Это связано с увеличением относительной толщины слоя SnO₂ (см. табл. 1). Дифрактограмма пленок $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/In_2O_3]_{92}$ после термической обработки показала (рис. 3), что процесс кристаллизации в них начинается при отжиге 500°С в течение 30 мин.

Последовательность фазовых превращений для образца толщиной 0.57 мкм:

аморфный
$$\frac{500^{\circ}C}{\Rightarrow}$$
 In; CoFe; InBO₃;
*n*FeO₄ $\frac{600^{\circ}C}{\Rightarrow}$ CoFe↓; InBO₃↑; InFeO₄↑

Здесь можно выделить ряд особенностей. Вопервых, оксид индия восстанавливается до металлического состояния в начальной стадии кри-

Рис. 2. Дифрактограммы пленок $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/SnO_2]_{32}$ толщиной 0.44 мкм после отжига при температурах: $1 - 450, 2 - 500, 3 - 550, 4 - 600^{\circ}$ С в течение 30 мин.

Рис. 3. Дифрактограммы пленок $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/In_2O_3]_{92}$ толщиной 0.57 мкм после отжига при температурах: $1 - 20, 2 - 400, 3 - 500, 4 - 600^{\circ}C$ в течение 30 мин.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 83 № 9 2019

сталлизации. В данном случае этот процесс возможен из-за низкого значения энергии разрыва связи In–O (76 ккал/моль) [7]. В явном виде бор выступает как элемент восстановитель с образованием соединения InBO₃. С металлической фазой In взаимодействует с образованием сложного оксида InFeO₄. Вплоть до термической обработки 600°С в течение 30 минут сохраняется металлическая фаза CoFe.

выводы

Твердофазные реакции в многослойных пленках $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/ZnO]_{112},$ $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/SnO_2]_{32}$ и $[(Co_{40}Fe_{40}B_{20})_{34}(SiO_2)_{66}/In_2O_3]_{92}$ с наноразмерными толщинами слоев при термической обработке до 600°С приводят к синтезу соединений сложного состава. Большую роль в ТХР играет бор, выступая как элемент восстановитель. В зависимости от состава оксидного полупроводника может реализовываться его взаимодействие как с диэлектрической, так и металлической фазой композита. При образовании металлической фазы в зависимости от соотношения толщин слоев оксидного полупроводника и композита могут образовываться различные соединения.

Работа выполнена при поддержке Минобрнауки в рамках проектной части государственного задания (№ 3.1867.2017/4.6).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Мягков В.Г., Жигалов В.С.* Твердофазные реакции и фазовые превращения в слоистых наноструктурах. Новосибирск: Изд-во СО РАН, 2011. 156 с.
- Мягков В.Г., Жигалов В.С., Быкова Л.Е., Рыбакова А.Н. // Письма в ЖЭТФ. 2015. Т. 102. № 6. С. 393.
- 3. Голубева О.Ю., Доманова О.С., Уголков В.Л., Гусаров В.В. // ЖОХ. 2007. Т. 77. № 2. С. 246.
- Мягков В.Г., Быкова Л.Е., Бондаренко Г.Н. // ЖЭТФ. 1999. Т. 115. № 5. С. 1756.
- Rylkov V.V., Nikolaev S.N., Chernoglazov K.Yu. et al. // Phys. Rev. B. 2017. V. 95. Art. № 144202.
- 6. *Холлэнд Л*. Нанесение тонких пленок в вакууме. М.-Л.: Гос. энерг. изд-во, 1963. 378 с.
- Гурвич Л.В. Карачевцев Г.В., Кондратьев В.Н. и др. Энергии разрыва химических связей. Потенциалы ионизации и сродство к электрону. М.: Наука, 1974. 351 с.