УДК 537.226

СТРУКТУРА, ДИЭЛЕКТРИЧЕСКИЕ И ТЕПЛОВЫЕ СВОЙСТВА ТЕТРАХЛОРЦИНКАТА РУБИДИЯ В ПОРИСТЫХ СТЕКЛАХ

© 2019 г. Л. Н. Коротков¹, Л. С. Стекленева^{1, *}, И. Н. Флеров², Е. А. Михалева², Е. Рысякевич-Пасек³, М. С. Молокеев^{2, 4}, В. С. Бондарев^{2, 4}, М. В. Горев^{2, 4}, О. И. Сысоев⁵

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет", Воронеж, Россия

²Федеральное государственное бюджетное учреждение науки "Институт физики имени Л.В. Киренского

Сибирского отделения Российской академии наук", Красноярск, Россия

³Вроцлавский технологический университет, Вроцлав, Польша

 $^4 \Phi$ едеральное государственное автономное образовательное учреждение высшего образования

"Сибирский федеральный университет", Институт инженерной физики и радиоэлектроники, Красноярск, Россия

 $^5 \Phi$ едеральное государственное казенное военное образовательное учреждение высшего образования

"Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия

имени профессора Н.Е. Жуковского и Ю.А. Гагарина", Воронеж, Россия

**E-mail: lubov_stekleneva@mail.ru* Поступила в редакцию 12.11.2018 г. После доработки 29.03.2019 г. Принята к публикации 27.05.2019 г.

Представлены результаты исследования рентгеновской дифракции, теплоемкости, диэлектрической проницаемости и коэффициента объемного теплового расширения композитных материалов, полученных внедрением соли Rb₂ZnCl₄ в пористые матрицы из боросиликатного стекла со средним диаметром пор 46 и 320 нм для интервала температур 120–350 К. Анализ полученных данных позволил определить температуры переходов в несоразмерную и сегнетоэлектрическую фазы, а также температуру замораживания подвижности доменных границ в частицах Rb₂ZnCl₄. Обнаружено значительное повышение в них температуры Кюри.

DOI: 10.1134/S0367676519090138

В настоящее время в физике твердого тела и физическом материаловедении наблюдается интерес к изучению явлений, связанных с размерным эффектом в различных материалах, в частности, в системах ультрадисперсных частиц различной топологии и размерности.

Влияние "ограниченной геометрии" на электрофизические свойства [1-5], структуру [6, 7] и фазовые переходы [1-7] в частицах ряда модельных сегнетоэлектриков (TGS, KH₂PO₄, NH₄HSO₄ и др.) изучено уже достаточно хорошо. Вместе с тем физические свойства ультрадисперсных сегнетоэлектриков с несоразмерными фазами до сих пор практически не были исследованы, за исключением нитрита натрия [6, 7]. Однако выявить существование несоразмерной фазы во внедренных частицах NaNO₂ до сих пор не удалось, что, вероятно, связано со слишком узкой температурной областью ее существования (около 1 K).

Существуют подобные материалы с несоразмерной фазой, занимающей более широкую температурную область. Примером является сегнетоэлектрик — сегнетоэластик тетрахлорцинкат рубидия (Rb_2ZnCl_4). В объемном кристалле переход из параэлектрической в несоразмерную фазу реализуется при температуре $T_i = 303$ K, а из несоразмерной в сегнетоэлектрическую — при температуре $T_C = 195$ K [8]. Таким образом, область существования несоразмерной фазы в данном материале составляет около 108 K, что делает его более подходящим объектом для изучения влияния "ограниченной геометрии" на фазовые переходы при температурах T_i и T_C .

Цель настоящей работы — комплексное изучение влияния "ограниченной геометрии" на физические свойства и кооперативные процессы в тетрахлорцинкате рубидия.

Эксперименты выполнены на поликристаллическом образце тетрахлорцинката рубидия и композитах, полученных путем внедрения соли Rb_2ZnCl_4 в стеклянные матрицы в виде пластин с внешними размерами $10 \times 10 \times 0.5$ мм и средним диаметром сквозных пор ~46 и 320 нм. (Далее для

Рис. 1. Фрагмент рентгеновской дифрактограммы для композита RS-46 при различных температурах. Стрелкой помечен сверхструктурный пик (2/3 2 0) (a); температурная зависимость интенсивности сверх-структурного пика (2/3 2 0) (δ).

обозначения этих композитов примем аббревиатуры: RS-46 и RS-320 соответственно.)

Процесс внедрения материала в предварительно отожженные матрицы осуществлялся из насыщенного водного раствора тетрахлорцинката рубидия при температуре около 100°С в течение 3.5 ч. Затем образцы вынимались из раствора и тщательно высушивались при температуре 330°С в течение 10 ч. Плотность незаполненных матриц обоих типов составила приблизительно 1.2 г · см⁻³, относительный объем пор — около 55%, объемная доля Rb₂ZnCl₄ в порах ≈10%, а его доля по отношению к объему всего образца ≈6%.

Рентгенодифракционный анализ, проведенный с использованием рентгеновского дифрактометра D2 PHASER (длина волны характеристического излучения $\lambda_{Cu} = 1.5418$ Å), показал, что внедренный материал кристаллизовался в порах матрицы в виде кристаллитов со структурой, соответствующей объемному Rb₂ZnCl₄. Оценки размеров внедренных частиц в порах, сделанные с использованием программы TOPAS 4.2 [9], дали $d \approx 70$ и 51 нм для RS-46 и RS-320 соответственно.

Дифракционные спектры для образца RS-46 были подробно изучены в интервале температур 143-320K, с помощью дифрактометра Bruker D8 ADVANCE (Си*К* α -излучение), снабженного камерой Anton Paar и линейным детектором VANTEC. Измерения проводили в диапазоне углов 2 θ = 10° - 90° с шагом 2θ = 0.016° , при этом время счета составляло 1 с на шаг.

Для проведения диэлектрических исследований на поверхности образцов были нанесены серебряные электроды. Образцы помещали в криостат, где температура изменялась от 100 до 350 К и контролировалась с помощью платинового термометра сопротивления с погрешностью, не превышающей ± 0.2 К. Измерения диэлектрической проницаемости осуществлялось с помощью измерителя иммитанса E7-12 на частоте 10 кГц в процессах охлаждения и нагрева образца со скоростью около 1–2 К/мин. Перед каждым измерением для удаления адсорбированной из воздуха влаги осуществляли отжиг образцов при температуре ≈400 К.

Измерения теплоемкости $C_p(T)$ в широком интервале температур было выполнено на автоматизированном адиабатическом калориметре, описанном в работе [10]. Измерения проводили в вакууме 10^{-6} мм рт. ст. в режимах дискретных и непрерывных нагревов. Погрешность определения теплоемкости не превышала $\pm 1.0\%$.

Тепловое расширение исследовалось на дилатометре DIL-402C в интервале температур 100—370 К в динамическом режиме со скоростью изменения температуры 3 К/мин в атмосфере гелия.

Измерения линейного коэффициента теплового расширения стеклянных матриц показали отсутствие аномального поведения, при этом его величина $\alpha \leq 5 \cdot 10^{-6}$ K⁻¹.

Анализ спектров рентгеновского рассеяния для композита RS-46, полученных для интервала температур 140–320 К показал (рис. 1*a*), что ниже 310 К появляется сверхструктурный пик (2/3 2 0), соответствующий температуре T_i объемного Rb₂ZnCl₄. Интенсивность пика увеличивается по мере охлаждения образца (рис. 1*б*). Других сверхструктурных линий в ходе эксперимента не наблюдалось, в отличие от данных работы [8], где изучались монокристаллические образцы тетрахлорцинката рубидия. Это обстоятельство может быть связано с весьма небольшим количеством сегнетоэлектрического компонента в композите.

Определена структура кристаллитов Rb_2ZnCl_4 в условиях "ограниченной геометрии" при температурах 320, 205 и 143 К (табл. 1). Сравнение параметров элементарной ячейки при комнатной температуре с данными для монокристаллического образца [8] показало их хорошее совпадение. Объем ячейки *V* кристаллитов, приходящийся на формульное число *Z*, незначительно уменьшается при охлаждении (табл. 1) и при всех температурах практически почти совпадает с данными [8].

Полученные при различных температурах значения отношения V/Z позволяют сделать оценку коэффициента объемного расширения (β) частиц Rb₂ZnCl₄, входящих в состав композита RS-46. Воспользовавшись данными, представленными в таблице, найдем коэффициент объемного расширения $\beta \approx 153 \cdot 10^{-6}$ K⁻¹. Это очень близко к величине β (рис. 2), определенной для монокристалла тетрахлорцинката рубидия [11].

В случае композитов RS-46 и RS-320 температурные зависимости β лежат существенно ниже зависимости $\beta(T)$ для массивного Rb₂ZnCl₄ (рис. 2). Это обусловлено тем, что они преимущественно состоят из щелочно-боросиликатного стекла, характеризующегося очень небольшим коэффициентом $\beta \leq 15 \cdot 10^{-6} \text{ K}^{-1}$ в интервале температур 100–310 K [12].

Принимая это во внимание, можно заключить, что внедренные в пористые матрицы частицы испытывают деформации растяжения при охлаждении.

Какие-либо особенности на зависимостях $\beta(T)$ для композитов RS-46 и RS-320 в окрестностях как T_i , так и T_C не наблюдаются. Они едва заметны и для монокристалла Rb₂ZnCl₄ [11], что проиллюстрировано на рис. 2.

Температурные зависимости диэлектрической проницаемости, полученные для образцов исследу-

Рис. 2. Температурные зависимости коэффициента объемного теплового расширения для монокристалла $Rb_2ZnCl_4(1)$ [11] и композитов RS-320 (2) и RS-46 (3).

емых материалов, представлены на рис. За. Зависимость $\varepsilon(T)$, полученная для массивного Rb₂ZnCl₄, имеет, по меньшей мере, два максимума. Первый (в окрестностях температуры $T_i \approx 307$ K) соответствует переходу из параэлектрической фазы в несоразмерную; второй представляет собой отчетливый, несимметричный пик при температуре $T_C \approx 192$ K, соответствующий переходу между сегнетоэлектрической и несоразмерной фазами. В некотором интервале температур, лежащем ниже T_C , диэлектрическая проницаемость остается сравнительно высокой, образуя так называемую область "плато", обусловленную высокой подвижностью доменных границ [13].

В монокристаллических образцах Rb_2ZnCl_4 "температура замораживания" аномально высокой подвижности доменов происходит при температуре $T^* \approx 154$ K, которой соответствует слабая аномалия теплоемкости [13, 14] и максимум тангенса угла диэлектрических потерь [13, 15].

Таблица 1. Параметры кристаллической структуры Rb₂ZnCl₄ в матрице пористого стекла со средним диаметром пор 46 нм

Температура <i>T</i> , К		320	205	143
Пространственная группа		Pnma	Pnma: -1ss	Pn2 ₁ a
Параметры ячейки	<i>a</i> , Å	9.2759 (3)	27.681 (2)	27.603 (3)
	b, Å	7.2926 (2)	7.2557 (5)	7.2328 (8)
	<i>c</i> , Å	12.7523 (4)	12.6613 (7)	12.616 (1)
Объем ячейки <i>V</i> , Å ³		862.64 (5)	2543.0 (3)	2518.7 (5)
Формульное число Z		4	12	12
V/Z, Å ³		215.66	211.92	209.92

Рис. 3. *а* – Температурные зависимости диэлектрической проницаемости для кристаллического образца Rb_2ZnCl_4 (*1*) и композитов RS-320 (*2*, 3) и RS-46 (*4*, 5), полученные в ходе нагрева (*1*, *3*, 5) и охлаждения (*2*, *4*); δ – температурная зависимость теплоемкости композита RS-46.

Кривые $\varepsilon(T)$ для композитов RS-46 и RS-320 (рис. 3*a*) имеют почти одинаковый вид. Очевидно это связано с тем, что несмотря на заметное различие среднего диаметра пор матриц, доля внедренного вещества, а также средние размеры частиц Rb₂ZnCl₄ в порах различаются незначительно. На зависимостях $\varepsilon(T)$ наблюдаются три аномалии около 160, 245 и 307 К. Максимум ε около 307 К близок к температуре, ниже которой появляется сверхструктурный рефлекс (2/3 2 0). Это обстоятельство позволяет связать его с переходом между несоразмерной и параэлектрической фазами.

Для идентификации других особенностей диэлектрического отклика наряду с рентгенодифракционным экспериментом были проведены измерения теплоемкости образца композита RS-46 (рис. 36). На кривой $C_p(T)$, полученной в ходе нагрева, отчетливо видны два максимума. Размытый максимум, локализованный около 285 К, по-видимому, связан с переходом из несоразмерной в параэлектрическую фазу. (Причины, вследствие которых его позиция не совпадает с позицией максимума є вблизи $T_i \approx 307$ К, требуют дополнительных исследований, выходящих за рамки данной работы.)

Четкий пик C_p около 232 К имеет такой же вид, что и аномалия теплоемкости для монокристаллического тетрахлорцинката рубидия в окрестностях T_C [14]. Это говорит о том, что данный пик теплоемкости обусловлен сегнетоэлектрическим фазовым переходом. В его окрестностях при температуре ≈ 245 К на зависимостях $\varepsilon(T)$, полученных в ходе охлаждения композитов RS-46 и RS-320, регистрируется ступенькообразная аномалия. На зависимостях $\varepsilon(T)$, полученных при нагреве, отчетливых аномалий диэлектрического отклика, индицирующих сегнетоэлектрический фазовый переход не выявлено.

Обсудим размытый максимум диэлектрической проницаемости при $T^* = 160$ К. В отличие от аномалий є вблизи T_i и T_c , максимум при T^* не сопровождается какой-либо особенностью на кривой $C_p(T)$. Это показывает, что он не связан со структурным фазовым переходом, а, по-видимому, обусловлен перестройкой в доменной структуре. Такой максимум є около 160 К ранее обнаружен для монокристалла Rb₂ZnCl₄ с высоким содержанием дефектов [14].

При циклическом изменении температуры выше некоторой $T_0 \approx 151$ К появляется температурный гистерезис диэлектрической проницаемости (рис. 3*a*). Ниже T_0 гистерезисные явления не наблюдаются. В случае монокристаллического тетрахлорцинката рубидия имеет место похожий гистерезис ε , который снизу ограничен T_0 , а сверху — T_i . Считается, что данный гистерезис преимущественно обусловлен закреплением солитонов и доменных границ дефектами кристаллической решетки [13–15].

В отличие от монокристаллического Rb_2ZnCl_4 , в случае композитов RS-46 и RS-320 гистерезис є простирается существенно выше T_i . Это позволяет предполагать, что наряду с вышеупомянутыми механизмами в композитах дополнительный вклад в необратимость зависимости $\varepsilon(T)$ связан с релаксацией упругих напряжений, возникающих во внедренных частицах вследствие различия температурных коэффициентов α компонентов композита.

Подводя итог работе, основываясь на результатах проведенных исследований, можно констатировать, что температура перехода в несоразмерную фазу T_i в частицах Rb_2ZnCl_4 , внедренных в пористые матрицы с размером пор 46 и 320 нм, мало изменяется по сравнению с массивным монокристаллическим образцом.

Анализ экспериментальных результатов показывает, что в сегнетоэлектрической фазе наночастиц Rb_2ZnCl_4 возникает подвижная доменная структура, которая "замораживается" при $T_0 \approx 151$ K, как и в объемном материале.

Наряду с этим температура сегнетоэлектрического фазового перехода в условиях ограниченной геометрии повышается на величину $\Delta T_C \approx 50$ K. Учитывая, что во внедренных частицах Rb_2ZnCl_4 при охлаждении появляются упругие напряжения растяжения (σ), можно предположить, что именно они ответственны за повышение Т_с. Оцени максимальное упругое напряжение в частице: $\sigma \approx \beta c \Delta T \approx 3.5 \cdot 10^7 \Pi a$ (здесь β – коэффициента объемного расширения для монокристалла Rb_2ZnCl_4 , *c* – среднее значение упругого модуля, полученное с использованием данных работы [16], и $\Delta T \approx 100 \text{ K}$ – разница между температурой внедрения вещества и T_{C}). Принимая во внимание, что $dT_C/dP = -50 \text{ K}/\Gamma\Pi a$ для Rb_2ZnCl_4 [17], получим $\Delta T_C \approx 1.5$ K, что существенно меньше наблюдаемого смещения температуры Кюри.

Можно предположить, что сегнетоэлектрический фазовый переход в отдельной наночастице Rb₂ZnCl₄ реализуется в условиях, когда длина волны пространственных смещений атомов λ, возрастающая по мере удаления от T_i в сторону низких температур, становится сопоставимой с размером частицы d. Для оценки длины λ воспользуемся экспериментальной температурной зависимостью параметра несоразмерности δ [8]. Для T = 250 К параметр $\delta \approx 0.026$. Принимая период трансляции $C \approx 1$ нм, находим $\lambda = C/\delta \approx 38.5$ нм. Видим, что действительно размеры частиц ($d \approx 70$ и 51 нм для RS-46 и RS-320 соответственно) сопоставимы с λ вблизи температуры сегнетоэлектрического фазового перехода во внедренных в пористые матрицы частицах Rb₂ZnCl₄.

Данное предположение, однако, нуждается в экспериментальной проверке.

СПИСОК ЛИТЕРАТУРЫ

- Rogazinskaya O.V., Milovidova S.D., Sidorkin A.S. u dp. // Ferroelectrics. 2010. V. 397. P. 191.
- Tarnavich V., Korotkov L., Karaeva O. et al. // Opt. Applicate. 2010. V. 40. P. 305.
- Ciżman A., Rysiakiewicz Pasek E., Kutrowska J. et al. // Sol. St. Phenom. 2013. V. 200. P. 144.
- Mikhaleva E.A., Flerov I.N., Kartashev A.V. et al. // J. Mater. Sci. 2018. V. 53. P. 12132.
- Mikhaleva E.A., Flerov I.N., Kartashev A.V. et al. // Ferroelectrics. 2017. V. 513. P. 44.
- 6. Fokin A.V., Kumzerov Yu.A., Okuneva N.M. et al. // Phys. Rev. Lett. 2002. V. 89. Art. № 175503.
- Бескровный А.И., Василовский С.Г., Вахрушев С.Б. и др. // ФТТ. 2010. Т. 52. № 5. С. 1021; Beskrovny A.I., Vasilovskiĭ S.G., Vakhrushev S.B. et al. // Phys. Sol. St. 2010. V. 52. № 5. Р. 1092.
- Багаутдинов Б.Ш., Шехтман В.Ш. // ФТТ. 1999. T. 41. № 6. С. 1084; Bagautdinov B.Sh., Shekhtman V.Sh. // Phys. Sol. St. 1999. V. 41. № 6. Р. 987.
- 9. Bruker AXS TOPAS V4. Karlsruhe: Bruker AXS, 2008.
- Kartashev A.V., Flerov I.N., Volkov N.V. et al. // Phys. Sol. St. 2008. V. 50. № 11. P. 2115.
- Yamaguchi T., Shimizu F. // Ferroelectrics. 2000. V. 237. P. 201.
- 12. Михалева Е.А., Флёров И.Н., Карташев А.В. и др. // ФТТ. 2018. Т. 60. № 7. С. 1328; Mikhaleva E.A., Flerov I.N., Kartashev A.V. et al. // Phys. Sol. St. 2018. V. 60. № 7. Р. 1338.
- Гриднев С.А., Горбатенко В.В., Прасолов Б.Н. // Кристаллография. 1997. Т. 42. № 4. С. 730.
- 14. Струков Б.А., Белов А.А., Горшков С.Н. и др. // Изв. АН СССР. Сер. физ. 1991. Т. 55. № 3. С. 470.
- 15. Gridnev S.A., Shuvalov L.A., Gorbatenko V.V. et al. // Ferroelectrics. 1993. V. 140. P. 145.
- Hirotsu S.H., Toyta K., Hamano K. // J. Phys. Soc. Jap. 1979. V. 46. P. 1389.
- 17. Gesi K. // Ferroelectrics. 1985. V. 64. P. 97.