УДК 621.385.624

ОГРАНИЧЕНИЯ ТОКОВ ПРИ ТРАНСПОРТИРОВКЕ СПЛОШНОГО АКСИАЛЬНО-СИММЕТРИЧНОГО ЭЛЕКТРОННОГО ПУЧКА В ПРОЛЕТНЫХ КАНАЛАХ ЭЛЕКТРОВАКУУМНЫХ УСТРОЙСТВ МИЛЛИМЕТРОВОГО ДИАПАЗОНА

© 2020 г. В. Е. Родякин^{1, *}, В. М. Пикунов¹, В. Н. Аксенов², Н. Е. Овсянников²

¹Институт проблем лазерных и информационных технологий РАН — филиал Федерального государственного учреждения "Федеральный научно-исследовательский центр "Кристаллография и фотоника" Российской академии наук", Шатура, Россия

²Федеральное государственное бюджетное учреждение высшего образования, Московский государственный университет имени М.В. Ломоносова, физический факультет и международный лазерный центр, Москва, Россия

**E-mail: vrodyakin@mail.ru* Поступила в редакцию 29.07.2019 г. После доработки 30.08.2019 г. Принята к публикации 27.09.2019 г.

Исследуются условия обеспечения равновесного стационарного состояния сплошных электронных потоков большой плотности, транспортируемых в цилиндрических пролетных каналах и фокусируемых однородным магнитным полем. Проводится сравнение результатов расчета с данными, полученными с использованием квазитрехмерной программы "Арсенал-МГУ" и аналитическими формулами других авторов.

DOI: 10.31857/S0367676520010251

введение

В настоящее время происходит интенсивное освоение миллиметрового диапазона (с частотами 0.03-0.3 ТГц и длинами волн 10-1 мм). Поэтому повышение мощности компактных электровакуумных усилителей и генераторов в этом диапазоне является актуальной задачей [1]. Перспективными мощными устройствами миллиметрового диапазона являются устройства клистронного типа: лампы бегушей волны (ЛБВ) на цепочках связанных резонаторов (ЦСР), клистроны с распределенным взаимодействием, клистроды, твистроны и др. Поскольку требование компактности приборов ограничивает величину используемого ускоряющего напряжения (обычно менее 20 кВ) [2], то разработчикам приходится повышать мощность электронного потока в основном за счет увеличения его силы тока.

Для эффективного взаимодействия электронного потока с электромагнитными полями многозазорных резонаторов электровакуумных приборов клистронного типа, радиус пролетного канала R_T должен быть меньше четверти рабочей длины волны λ_0 . Поэтому из-за малых размеров сечения пролетного канала в миллиметровом диапазоне для увеличения силы тока приходится переходить к использованию электронных потоков с высокими значениями плотности тока в пучке (боле 1 кА/см²) [1]. Увеличение плотности тока в электронном потоке приводит к увеличению сил пространственного заряда, препятствующих токопрохождению пучка через пролетный канал. Обеспечение условий максимального токопрохождения при транспортировке плотных электронных потоков в пролетных каналах электровакуумных устройств клистронного типа является одной из важнейших задач, возникающих перед разработчиками при создании подобных устройств миллиметрового диапазона.

УСЛОВИЯ РАВНОВЕСНОГО СТАЦИОНАРНОГО СОСТОЯНИЯ ПЛОТНЫХ ЭЛЕКТРОННЫХ ПУЧКОВ, ФОКУСИРУЕМЫХ ОДНОРОДНЫМ МАГНИТНЫМ ПОЛЕМ

Источником электронного потока в мощных электровакуумных приборах является электронная пушка. Для осуществления транспортировки электронного пучка на расстояния порядка длины устройства необходимо, чтобы пучок находился в равновесном состоянии, при котором имеет место компенсация всех сил, действующих на электроны пучка.

В силу аксиальной симметрии будем использовать цилиндрическую систему координат (r, φ, z) . Используя параксиальное приближение и закон сохранения углового момента импульса относительно оси [4], можно найти выражение, соответствующее бриллюэновскому магнитному полю для граничного электрона:

$$B_{\rm Ep} = B_{\rm Ep}^{\kappa \pi} \left(\frac{2}{1+\gamma_0}\right)^{1/4} \sqrt{\gamma_0 \gamma_b F_{\rm p} - \sqrt{\gamma_0^2 - 1} \sqrt{\gamma_b^2 - 1}}, \quad (1)$$

где:

$$B_{\rm 5p}^{\rm \tiny KЛ} = \sqrt{\frac{\sqrt{2}}{\pi \varepsilon_0 \eta_e^{3/2}}} \frac{\sqrt{I_b}}{R_b V_0^{1/4}}$$
(2)

- классическое значение бриллюэновского магнитного поля без учета собственного магнитного поля и неоднородности электронного пучка [5], ε_0 - электрическая постоянная, $I_b = \int_{S_b} j_b(r) ds$ - ток инжекции, создаваемый электронной пушкой, $j_b(r)$ - радиальное распределение продольной компоненты плотности инжектируемого тока, S_b - площадь поперечного сечения электронного потока, $\eta_e = \frac{e}{m_0}$ - отношение заряда *e* к массе покоя m_0

отдельного электрона, $F_{\rho} = \frac{1}{S_{b}} \int_{S_{b}} \frac{J_{b}(r)}{U(r)} ds - \phi opm-$

фактор плотности заряда в пучке, $U(r) = \frac{u(r)}{u_0}$ и

 $J_b(r) = \frac{j_b(r)}{j_0}$ — нормализованные радиальные распределения скорости электронов и плотности тока в пучке, $u_0 = \frac{\sqrt{1+\gamma_0}}{\gamma_0} \sqrt{\eta_e V_0}$, $u_b = u(R_b)$, $\gamma_b = \left(1 - \frac{u_b^2}{c^2}\right)^{-\frac{1}{2}}$, $j_0 = \frac{I_b}{S_b}$, $\gamma_0 = 1 + \frac{\eta_e V_0}{c^2}$, c – скорость

света в вакууме.

Для определения форм-фактора плотности заряда потока F_{ρ} и величины γ_b , входящих в формулу (1), необходимо знать самосогласованную поперечную структуру электронного потока в стационарном состоянии, т.е. радиальные распределения электрического потенциала, плотности заряда и скоростей электронов.

ЧИСЛЕННАЯ МОДЕЛЬ ДЛЯ РАСЧЕТА САМОСОГЛАСОВАННОЙ СТРУКТУРЫ АКСИАЛЬНО-СИММЕТРИЧНОГО ЭЛЕКТРОННОГО ПУЧКА В ПРОЛЕТНОМ КАНАЛЕ В СТАЦИОНАРНОМ РАВНОВЕСНОМ СОСТОЯНИИ

При выполнении условия равновесия радиальных сил, действующих на электроны пучка при достаточно большом фокусирующем магнитном поле, можно считать движение электро-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 1 2020

нов одномерным вдоль продольной оси *z*. В качестве математической модели используется стационарная, нелинейная, одномерная смешанная краевая задача в поперечном сечении пролетного канала для нелинейного уравнения Пуассона:

$$\begin{cases} \frac{1}{r} \frac{d}{dr} \left(r \frac{\partial V}{\partial r} \right) = -\frac{\rho(r)}{\varepsilon_0}, \quad r \in (0, R_T), \\ \frac{dV}{dr} \Big|_{r=0} = 0, \quad V \Big|_{r=R_T} = V_0. \end{cases}$$
(3)

Здесь $\rho(r) = j_z(r)/u_z(r)$, плотность пространственного заряда электронного пучка отлична от нуля в области $r \in [R_{b0}, R_b]$, $u_z(r) = c\sqrt{1-1/(1+|e|V(r)/(m_0c^2))^2}$ — распределение скорости электронов по радиусу пучка.

Считаем, что при входе в пролетный канал инжектируемые электроны имеют энергию, определяемую электронной пушкой, а длина пролетного канала много больше радиуса канала. Поэтому устанавливается однородная в продольном направлении *z* и неоднородная по радиусу *r* стационарная картина, которая и описывается численным решением краевой задачи (3) уравнений.

При решении краевой задачи (3) используется многослойная модель электронного пучка с неравномерном разбиением по радиусу:

$$0 = r_0 < r_1 < r_2 < \dots r_{i-1} < r_i < < r_{i+1} \dots < r_{L-1} < r_L = R.$$
(4)

Так как рассматриваемая задача является нелинейной, то ее решение находится методом итераций. При решении сохраняется непрерывность скалярного потенциала и его производной по радиусу, на границах слоев. На каждом шаге итераций используется метод прогонки [6]. При решении сохраняется непрерывность скалярного потенциала и его производной по радиусу, на границах слоев. Критерий сходимости итераций в стационарном режиме имеет вид:

$$\frac{1}{L} \sum_{i=1}^{L} \left| V_i^{(j+1)} - V_i^{(j)} \right| < \varepsilon,$$
(5)

где: *j* – номер итерации, є – малый параметр.

Используемый одномерный численный алгоритм позволяет, находить параметры неоднородных электронных потоков в стационарном состоянии. Также с его помощью можно вычислять значения предельных вакуумных токов I_{limV} , обусловленных "тормозящими силами пространственного заряда" (ТСПЗ). Критерием достижения предельного тока I_{limV} , при увеличении тока I_b , является расходимость метода итераций.

Рис. 1. Сравнение зависимостей предельного вакуумного микропервеанса сплошного электронного пучка от ускоряющего напряжения при коэффициенте заполнения 0.8 (а) и коэффициента заполнения пучка трубы, полученных с помощью разработанного алгоритма [9] (1), программы "Арсенал-МГУ" (2) и аналитической формуле (11) (3).

РЕЗУЛЬТАТЫ ЧИСЛЕННЫХ ИССЛЕДОВАНИЙ ПРЕДЕЛЬНЫХ ВАКУУМНЫХ ТОКОВ, ОБУСЛОВЛЕННЫХ ПРОДОЛЬНЫМ ТОРМОЗЯЩИМ ДЕЙСТВИЕМ СИЛ ПРОСТРАНСТВЕННОГО ЗАРЯДА

Для проверки точности вычисления предельных вакуумных токов с помощью разработанного численного алгоритма расчета самосогласованной структуры пучка в пролетном канале была использована программа "Арсенал-МГУ" [3]. Данная программа позволяет проводить численный анализ квазитрехмерного движения электронных потоков в аксиально-симметричных электронно-оптических системах электровакуумных приборов с учетом влияния сил пространственного заряда. Поиск предельных токов с помощью программы производился путем последовательного увеличения силы тока до тех пор, пока итерации по пространственному заряду не переставали сходиться. При этом повеление электронного пучка становилось нестабильным, а на некоторых итерациях по пространственному заряду происходило падение потенциала на оси ниже нуля, и появлялись отраженные из канала электроны.

Кроме программы "Арсенал-МГУ" для проверки точности разработанного алгоритма было проведено сравнение с аналитической формулой для предельного вакуумного тока сплошного электронного пучка [7]:

$$I_{limV}^{GP} = I_{limV}^{BR} \gamma_0^{2/3} \left\{ \left[\left(\gamma_0^{2/3} + G \right)^2 - \gamma_0^{2/3} \right]^{1/2} - G \right\}^{-1}, \quad (6)$$

где
$$I_{limV}^{BR} = \frac{17(\gamma_0^{2/3} - 1)^{3/2}}{G}$$
 kA, $G = 1 + 2\ln(R_T/R_b)$.

Отличие в значениях предельных токов от результатов расчета по двумерным программам и экспериментальным измерениям по данным авторов составляет 3% [7]. Для сравнения был выбран сплошной электронный поток с коэффициентом заполнения пучком трубы, равным 0.8 в интервале ускоряющих напряжений от 1 до 500 кВ. На рис. 1*а* приведены зависимости предельного вакуумного

микропервеанса $P_{\mu lim} = 10^{-6} \frac{I_{limV}}{V_0^{3/2}}$ от ускоряющего напряжения, полученные с помощью разработанного алгоритма, программы "Арсенал-МГУ" и аналитической формулы (6). Различие в значениях предельного микропервеанса, полученные разными методами, для $V_0 < 1~00$ кВ составляет менее 1% и постепенно увеличивается до 3% при приближении ускоряющего напряжения к значению 500 кВ.

Результаты расчетов зависимости предельного вакуумного микропервеанса сплошного электронного потока от коэффициента заполнения электронного пучка трубы, полученные с помощью разработанного алгоритма, программы "Арсенал-МГУ" и аналитической формулы (11), приведены на рис. 16.

Сравнение результатов показывает, что все три метода дают очень близкие результаты с разбросом значений в пределах долей процента. Приведенная на рис. 1*б*. зависимость предельного вакуумного микропервеанса сплошного электронного пучка имеет универсальный характер, и справедлива для любых значений радиуса пролетного канала и ускоряющего напряжения в интервале $V_0 < 20$ кВ.

Рис. 2. Зависимости обобщенного предельного тока сплошного электронного пучка от рабочей частоты: а) для ускоряющего напряжения 10 кВ при коэффициенте заполнения 0.5 (1), 0.6 (2), 0.7 (3), 0.8 (4), 0.9 (5); б) для коэффициента заполнения 0.8 при ускоряющем напряжении 5 (1), 10 (2), 15 (3), 20 кВ (4).

ОЦЕНКА ПРЕДЕЛЬНЫХ ТОКОВ ЭЛЕКТРОННЫХ ПУЧКОВ С УЧЕТОМ ОГРАНИЧЕНИЙ ПРИ НАРУШЕНИИИ "PABHOBECHOЙ МАГНИТНОЙ ФОКУСИРОВКИ" (РМФ)

Разработанный алгоритм расчета предельных вакуумных токов I_{limV} для аксиально-симметричных электронных потоков был получен в предположении, что фокусирующее продольное магнитное поле $B_{\phi} \gg B_{\rm Ep}$. Однако на практике не удается обеспечить сколь угодно большие значения фокусирующего магнитного поля из-за массо-габаритных ограничений, вызванных требованием компактности разрабатываемых усилителей и генераторов миллиметрового диапазона. Наиболее подходящими для фокусировки электронных пучков в таких приборах являются постоянные магниты, которые в настоящее время могут обеспечивать величину B_{ϕ} до 1 Тл [1].

Это накладывает дополнительное ограничение на величину предельного тока, который можно транспортировать в пролетном канале электровакуумного прибора. Это ограничение, также как и ТСПЗ, связано с расталкивающими силами пространственного заряда плотных электронных потоков. Однако в отличие от последнего, ограничение тока происходит не за счет продольного торможения электронов, а за счет нарушения условий поперечного равновесия, что приводит к увеличению радиуса электронного потока и оседанию крайних электронов на внутренние стенки пролетных каналов.

Проведенные с помощью программы "Арсенал-МГУ" численные исследования показали, что выполнение условия $B_{\phi} > 2B_{\rm 5p}^{\rm Kn}$ является приемлемым для обеспечения минимальных радиальных пульсаций, при которых нарушение условий рав-

новесного стационарного состояния плотных электронных пучков можно считать незначительным, даже для электронного пучка с током, близкому к предельному вакуумному. При этом погрешность расчета I_{limV} с помощью разработанного алгоритма не превышает 2%. Величину силы тока пучка, при которой нарушается условие $B_{\phi} > 2B_{\rm Ep}$, необходимое для обеспечения радиального равновесного стационарного состояния, будем обозначать как I_{limB} .

Таким образом, основными механизмами ограничения токопрохождения в пролетных каналах плотных электронных потоков являются: ТСПЗ и нарушения РМФ. Какой механизм является преобладающим, зависит от параметров электронного пучка и радиуса пролетного канала. Предельный вакуумный ток I_{limV} , не зависит от радиуса пролетного канала, поскольку провисание потенциала определяется значением относительной величины коэффициента заполнения пучком пролетного канала. Однако предельный ток $I_{lim B}$, определяемый величиной бриллюэновского магнитного поля, в значительной степени зависит от абсолютного значения радиуса пучка и, как следствие, радиуса канала.

Обобщенный предельный ток в рассматриваемом алгоритме определяется как $I_{lim} = \min(I_{limV}, I_{limB})$. Каждому значению радиуса пролетного канала, в котором происходит транспортировка электронного пучка, можно сопоставить рабочую длину волны $\lambda_0 = 4R_T$ и частоту прибора f_0 . На рис. 2*a* представлены оценочные зависимости от рабочей частоты обобщенного предельного тока I_{lim} сплошного электронного пучка с ускоряющим напряжением 10 кВ для различных значений коэффициента заполнения.

Горизонтальные участки кривых соответствуют областям ограничения тока за счет ТСПЗ, а быстро спадающие с увеличением частоты участки соответствуют нарушениям условий РМФ. Для электронного пучка с ускоряющим напряжением 10 кВ в приборах с рабочей частотой ниже 70 ГГц основным ограничивающим фактором увеличения тока являются ТСПЗ, а в области выше этого значения — за счет нарушения условий РМФ.

На рис. 26 приведены оценочные зависимости от рабочей частоты предельного тока сплошного электронного пучка с коэффициентом заполнения 0.8 для различных значений ускоряющего напряжения. С увеличением ускоряющего напряжения правая граница зоны ограничения тока за счет действия ТСПЗ смещается к длинноволновой части миллиметрового диапазона (кривые 1 и 4).

ЗАКЛЮЧЕНИЕ

Исследования самосогласованной поперечной структуры сплошных электронных потоков показали, что при приближении к предельным значениям токов увеличиваются ТСПЗ. Это приводит к увеличению радиальной компоненты напряженности собственного электрического поля на внешней границе пучка по сравнению со случаем однородного потока. При токе пучка, составляющем половину от предельного вакуумного тока, увеличение достигает 10%. Полученные в работе формулы учитывают данную неоднородность, и позволяют корректно рассчитать величину фокусирующего магнитного поля, требуемую для компенсации увеличения расталкивающих сил пространственного заряда таких потоков.

Проведено тестирование предложенных формул и алгоритмов расчета предельных токов сплошных аксиально-симметричных электронных потоков в цилиндрических пролетных каналах электровакуумных приборов. Сравнение результатов расчетов предельных токов с аналитическими данными других авторов, а также с расчетами по двумерной программе "Арсенал-МГУ", показали хорошее соответствие полученных результатов, с точностью до 1–3%.

Показано, что для сплошных электронных потоков величина предельного вакуумного микропервеанса составляет 15–22 мкА $\cdot B^{-3/2}$ для практически значимого интервала значений коэффициента заполнения пучка 0.6–0.8.

Показано, что величина обобщенных предельных токов в низкочастотной части миллиметрового диапазона 30–70 ГГц в основном определяется действием ТСПЗ. В высокочастотной части диапазона 70–300 ГГц обобщенные предельные значения токов определяются условиями РМФ.

Работа выполнена при поддержке Министерства науки и высшего образования в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН.

СПИСОК ЛИТЕРАТУРЫ

- Srivastava A. // Europ. J. Adv. Engin. Technol. 2015. V. 2. № 8. P. 54.
- 2. *Booskee J.H.* // Phys. Plasma. 2008. V. 15. Art. № 055502.
- Сандалов А.Н., Пикунов В.М., Родякин В.Е. // В сб. "Вакуумная СВЧ электроника". Нижний Новгород: Изд-во ИПФ РАН, 2002. С. 97.
- 4. *Рошаль А.С.* Моделирование заряженных пучков. М.: Атомиздат, 1979. 214 с.
- 5. *Алямовский И.В.* Электронные пучки и электронные пушки. М.: Сов. Радио, 1966. 454 с.
- 6. *Пикунов В.М.* // Уч. зап. физ. фак-та МГУ. 2014. № 4. С. 144358.
- Thode L.E., Godfrey B.B., Shanahan W.R. // Phys. Fluids. 1979. V. 22. № 4. P. 747.