УДК 535.215

ДЕТЕКТИРОВАНИЕ ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ ПРИ ПОМОЩИ РЕКТЕНН

© 2020 г. К. Т. Ч. Ву^{1,} *, Г. М. Казарян¹, В. Л. Саввин¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", физический факультет, Москва, Россия

**E-mail: kt.vu@physics.msu.ru* Поступила в редакцию 29.07.2019 г. После доработки 30.08.2019 г. Принята к публикации 27.09.2019 г.

Изучение терагерцового диапазона является важной задачей для науки в силу его многих возможных применений. Его исследование связано со значительными трудностями, вызванными сложностью создания подходящих детекторов. В данной статье рассматривается работа модели терагерцовой ректенны, которая представлена в виде выпрямляющей схемы.

DOI: 10.31857/S0367676520010330

введение

Терагерцовый диапазон электромагнитных волн, обычно, определяется границами частоты от 0.1 до 10 ТГц. Он отделяет инфракрасное излучение от микроволнового и имеет множество потенциальных применений, например, в медицине, неразрушающем контроле и беспроводной передаче энергии [1]. Многие области науки и техники также интересуются им в силу относительно малой длины волны, позволяющей достичь в задачах о получении изображения большее разрешение по сравнению с микроволнами.

Исследование этого диапазона затруднено в силу сложности создания для него подходящих детекторов. Методы, применяемые для оптического излучения, сталкиваются с трудностями, обусловленными низкой относительно этого диапазона частотой излучения. Энергия квантов электромагнитного излучения на этих частотах сравнима с тепловой энергией, поэтому фотоэлементы без охлаждения в них обладают низкой эффективностью преобразования [2].

Методы, работающие в микроволновом диапазоне, включат в себя использование так называемых ректенн, которые представляют собой антенну, соединенную с выпрямляющим элементом.

Обычно, в качестве такого элемента в различных работах применяли полупроводниковые диоды с барьером Шоттки или диоды с p-n переходом [3, 4]. В терагерцовом диапазоне они работают намного хуже в силу особенностей механизма переноса зарядов, который реализуется в таких диодах. Характерное время переноса заряда становится слишком большим для работы на этих частотах [5, 6].

Ряд современных исследований посвящен изучению свойств относительно новых типов диодов, например, диодов типа металл-диэлектрик-металл (МДМ-диоды), баллистических графеновых диодов [7–9], которые теоретически способны работать в этом частотном диапазоне.

Принцип работы МДМ-диодов основан на использовании туннельного эффекта. Благодаря этому, время переноса зарядов в таких диодах имеет порядок фемтосекунд [6, 9].

Баллистические графеновые диоды, которые также называют геометрическими диодами, имеют характерное время переноса зарядов примерно того же порядка [10, 11]. Теоретически, они способны достичь меньших значений сопротивления и больших значений чувствительности, чем однослойные МДМ-диоды.

ПОСТАНОВКА ЗАДАЧИ

В данной работе рассматривались процессы, которые происходят при прохождении сигнала через выпрямляющую схему, представленную на рис. 1. Эта схема хорошо описывает поведение токов и напряжений в выпрямляющей схеме, использующей диод с барьером Шоттки. В исходной модели емкость барьера и сопротивление, последовательное диоду, являлись некоторыми функциями напряжения. Однако было выяснено, что для выбранного масштаба напряжений они меняются довольно слабо, что позволило приблизить их постоянными значениями. К тому же

Рис. 1. Используемая выпрямляющая схема.

явления, происходящие при использовании диода с барьером Шоттки, могут отсутствовать при применении других типов диодов.

Этой схеме соответствует следующая система уравнений.

$$\begin{cases}
V_{\Gamma} = V_{\Gamma}(t) - I_{BX}R_{\Gamma} \\
C_{\omega}\frac{dV_{C}}{dt} = C_{\omega}\frac{dV_{BX}}{dt} - I_{BX} \\
L_{\omega}\frac{dI_{BX}}{dt} = V_{C} - V_{D} \\
C_{K}\frac{dV_{D}}{dt} = I_{BX} - I_{D} - I_{H} \\
L_{\Pi}\frac{dI_{D}}{dt} = V_{D} - V_{E} - I_{D}R_{\Phi} \\
L_{H}\frac{dI_{H}}{dt} = V_{D} - I_{H}R_{H} \\
C_{E}\frac{dV_{E}}{dt} = I_{D} - I_{E}(V_{E})
\end{cases}$$
(1)

Здесь $R_{r,} C_{\omega}, L_{\omega}$ – параметры эквивалентной цепи, описывающей антенну ректенны, $V_r(t)$ считается известной функцией времени, имеющей вид либо синусоиды, либо нарастающей синусоиды. Значительного различия в результатах при использовании этих двух форм замечено не было. $R_{\Phi,} C_K$, L_{Π} – параметры, соответствующие влиянию подводящих проводов и дополнительному сопротивлению диода как участка проводника.

В качестве модели диода используется цепочка из резистора RФ, нелинейного сопротивления, соответствующего вольт-амперной характеристике $I_{\rm E}(V_{\rm E})$, и включенной параллельно им емкостью С_п. Индуктивность L_п представляет собой индуктивность проводов схемы. Вольт-амперная характеристика $I_{\rm F}(V_{\rm F})$ получается отдельно из модели прохождения заряженных частиц через геометрический диод, описанной в [10]. Моделирование проводилось при помоши метода Монте-Карло, в котором поведение системы заряженных частиц рассматривалось в рамках модели Друде. Считалось, что диод расположен на подложке из оксида кремния SiO₂. Рассчитанный диод имел вид и вольт-амперную характеристику, которые представлены на рис. 2а и 2б, соответственно.

Емкость диода рассчитывалась по формуле, также приведенной в [10].

$$C = \frac{w\varepsilon_0(\varepsilon_1 - \varepsilon_2)}{\frac{s}{h} + \frac{4}{\pi}\ln 2}.$$
 (2)

Здесь *w* — характерная ширина диода, взятая в данной задаче равной средней ширине левой и правой частей диода; ε_0 — диэлектрическая постоянная, $\varepsilon_{1,2}$ — относительные диэлектрические про-

Рис. 2. Параметры используемого диода: a) форма диода, b) его вольт-амперная характеристика.

ницаемости графена и оксида кремния, *s* – ширина зазора в области сужения диода, которая считается приблизительно равной 100 нм, *h* – толщина подложки. Согласно этой формуле, значение емкости было приблизительно равно $5.28 \cdot 10^{-15} \, \Phi$.

Источником напряжения являлась антенна. На схеме она представлена в виде RLC-контура, состоящего из индуктивности L_{ω} и емкости C_{ω} , и источника напряжения $V_{r}(t)$. Параметры антенны рассчитываются отдельно в рамках задач об излучении некоторой антенны, настроенной на нужную частоту, и падении плоской электромагнитной волны на эту антенну [12, 13]. Для этого для модели антенны, настроенной на частоту 6.139 ТГц, получалась зависимость коэффициента отражения S_{11} от частоты. После этого рассчитывались параметры RLC-контура, который лучше всего приближает эту зависимость вблизи данной частоты.

Выпрямленный сигнал проходит через сглаживающий фильтр $L_{\rm H}$ на нагрузку $R_{\rm H}$. Индуктивность сглаживающего фильтра варьировалась для выяснения зависимости КПД преобразования от указанного параметра.

РЕЗУЛЬТАТЫ

Решение системы (1) проводилось численно. При этом было выяснено, что для некоторых значений параметров, особенно, для низких значений добротности RLC-контура, изображающего антенну, система становится жесткой. Для проведения решения был выбран метод Розенброка второго порядка, поскольку он позволял получать результаты с приемлемой точностью за относительно небольшое время.

Эффективность преобразования как оценочную характеристику рассчитывалась по формуле

КПД =
$$\frac{P_{\text{вых}}}{P_{\text{вх}}} = \frac{\frac{1}{T} \int_{\tau}^{T+\tau} I_H^2 R_H dt}{\frac{1}{T} \int_{\tau}^{T+\tau} I_{\text{вх}} R_{\text{вх}} dt}.$$
 (3)

Время начала интегрирования τ выбиралось как можно дальше от начала расчета, чтобы обеспечить затухание переходных процессов, возможных в данной системе.

Расчеты позволили выяснить типичный вид зависимости тока на нагрузке $I_{\rm H}$ от времени. Было заметно, что после переходного периода он переходит в режим осцилляции около некоторого постоянного уровня.

Основным результатом работы стало получение зависимости КПД преобразования от индуктивности фильтра нагрузки, которая представлена на рис. 3. Согласно экспериментальным рабо-

Рис. 3. Зависимость КПД преобразования от индуктивности сглаживающего фильтра.

там [13], КПД такой системы должен быть около 0.01%. Полученная зависимость позволяет сделать вывод о том, что в области высоких индуктивностей фильтра модель в большей степени соответствует экспериментальным данным, но в области низких индуктивностей она сильно от них отклоняется. Это позволяет заключить, что модель не учитывает параметры, присутствовавшие в экспериментах. Из этого следует, что модель, хорошо описывающая выпрямляющую схему, использующую диод с барьером Шоттки, очень ограниченно подходит для описания схемы, использующей геометрических диод из графена.

выводы

При помощи модели выпрямляющей схемы была исследована эффективность преобразования энергии в схеме, выпрямляющим элементов которой являлся графеновый геометрический диод. Значение КПД рассчитывалось для различных значений индуктивности сглаживающего фильтра. Было установлено, что при больших значениях индуктивности величина КПД согласуется с данными, указанными в экспериментальных работах, а при низких она значительно отклоняется от них. Это может быть вызвано тем, что модель, которая хорошо описывает выпрямляющие схемы с диодом с барьером Шоттки, не учитывает некоторые явления, которые происходят в схеме с геометрическим диодом из графена.

Стоит заметить, что эффективность работы данной схемы также зависит от амплитуды напряжения на ее входе. В силу малых размеров самих ректенн, это напряжение ожидается малым, особенно при работе с естественными источниками электромагнитного излучения. Это является довольно серьезной проблемой для успешного применения устройств данного типа. Тем не менее, напряжение, поступающее на один диод, может быть в некоторой мере увеличено за счет применения решетки антенн. Согласно работе [14] длина когерентности излучения черного тела может составлять десятки длин волн. Представленную модель можно расширить, подключив к одному диоду несколько антенн или даже подключить к одной нагрузке несколько разных диодов со своими антеннами, чтобы наблюдать интерференцию сигналов и то, как она влияет на эффективность преобразования. Однако это потребует построения довольно сложной эквивалентной схемы для учета влияния антенн друг на друга.

СПИСОК ЛИТЕРАТУРЫ

- Auton G., But D.B., Zhang J. et al. // Nano Lett. 2017. V. 17. № 11 P. 7015.
- Shank J., Kadlec E.A., Jarecki R.L. et al. // Phys. Rev. Appl. 2018. V. 9. Art. № 054040.
- Brown W.C. // IEEE Transact. Microwave Theory and Techniques. 1984. V. 32. № 9. P. 1230.
- Shanawani M., Masotti D., Costanzo A. // Electronics. 2017. V. 6. № 4. P. 99.

- 5. *Piltan S., Sievenpiper D.* // J. Appl. Phys. 2017. V. 122. № 18. Art. № 183101.
- 6. *Celestin M., Krishnan S., Bhansali S. et al.* // Nano Res. 2014. V. 7. № 5. P. 589.
- 7. *Grover S., Moddel G.* Rectenna solar cells. N.Y.: Springer, 2013. 399 p.
- 8. *Dragoman D., Dragoman M., Plana R.* // J. Appl. Phys. 2010. V. 108. № 8. Art. № 084316.
- 9. Citroni R., Leggieri A., Passi D. et al. // Adv. Electromagnetics. 2017. V. 6. № 2. P. 1.
- 10. Капаев И.В., Казарян Г.М., Саввин В.Л. // Изв. РАН. Сер. физ. 2019. Т. 83. № 1. С. 24; Караеv I.V., Kazaryan G.M., Savvin V.L. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. № 1. Р. 26.
- 11. *Ву К.Т.Ч., Казарян Г.М., Саввин В.Л.* // Изв. РАН. Сер. физ. 2019. Т. 83. № 1. С. 46; *Vu К.T.C., Kazaryan G.M., Savvin V.L.* // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. № 1. Р. 46.
- 12. *Ву К.Т.Ч, Егоров Р.В., Саввин В.Л. и др.* // Учен. зап. физ. фак-та Моск. ун-та 2016. № 5. С. 165503.
- *Zhu Z., Joshi S., Grover S. et al.* // J. Phys. D. 2013
 V. 46. № 18. Art. № 185101.
- 14. Lerner P.B., Cutler P.H., Miskovsky N.M. // J. Nanophoton. 2015. V. 9. № 1. Art. № 093044.