УДК 539.17.013:539.17.014

R-МАТРИЧНЫЙ АНАЛИЗ РЕАКЦИЙ С ВОЗБУЖДЕНИЕМ СОСТАВНОГО ЯДРА ¹⁰В В ОБЛАСТИ ЭНЕРГИИ 6.5–19.5 МэВ

© 2020 г. Л. Н. Генералов¹, С. М. Селянкина^{1, *}

¹Федеральное государственное унитарное предприятие Всероссийский научно-исследовательский институт экспериментальной физики, Саров, Россия

**E-mail: otd4@expd.vniief.ru* Поступила в редакцию 11.05.2020 г. После доработки 02.06.2020 г. Принята к публикации 26.06.2020 г.

Выполнен *R*-матричный анализ экспериментальных данных реакций ⁹Be(p,p_0)⁹Be, ⁹Be(p,p_1)⁹Be* (1.670 МэВ), ⁹Be(p,p_2)⁹Be* (2.430 МэВ), ⁹Be(p,n_0)⁹B, ⁹Be(p,d_0)⁸Be, ⁹Be(p,α_0)⁶Li, ⁹Be(p,α_2)⁶Li* (3.5618 МэВ), ⁷Li(³He, p_0)⁹Be для энергии возбуждения составного ядра ¹⁰B от 6.5 до 19.5 МэВ. В анализе использованы и наши экспериментальные данные: по дифференциальным, интегральным сечениям реакции ⁹Be(p,α_2)⁶Li* (3.5618 МэВ, $J^{\pi} = 0^{+}$) при энергии протонов $E_p = 2.3-4.5$ МэВ, и данные по дифференциальным сечениям реакции ⁹Be(p,α_2)⁶Li* (3.5618 МэВ, $J^{\pi} = 0^{+}$) при энергии протонов $E_p = 2.2-3.5$ МэВ. Определены новые уровни ¹⁰В и уточнены характеристики уже известных состояний.

DOI: 10.31857/S0367676520100117

ВВЕДЕНИЕ

Наше внимание к *R*-матричным исследованиям реакций привлекает возможность поиска новых, уточнения характеристик известных уровней ядер и выполнения оценки сечений ядерных реакций по ограниченным наборам экспериментальных данных. В качестве инструментария исследований выбран известный программный код AZURE2 [1, 2].

Основная причина настоящих исследований связана с появлением новых экспериментальных данных по дифференциальным сечениям пороговой реакции ⁹Be(p,α_2)⁶Li* (3.5618 МэВ, $\mathcal{J}^{\pi} = 0^+$) с Q = -1.437 МэВ – угловым распределениям α_2 -частиц для энергии протонов $E_p = 2.3-4.5$ МэВ, полученным [3] из описания результатов эксперимента [4] по изучению формы γ -линии с доплеровским уширением. При этом на основании экспериментальных исследований [5] и описываемых ниже, в данных [4] на 7.4 кэВ были увеличены энергии протонов.

В *R*-матричном анализе возможное количество реакций и область энергии возбуждения ядра ¹⁰В определяются тем, что при использовании стабильных ядер-мишеней (или пучков стабильных ядер) это ядро можно возбудить только в реакциях ⁶Li + α , ⁹Be + *p* и ⁷Li + ³He, начиная соответственно с энергий возбуждения $E_x = 4.460$, 6.585 и 17.79 МэВ. Количество каналов этих реакций огромно, большинство из них до сих пор экспериментально не изучено.

Во всех *R*-матричных исследованиях с образованием составного ядра ¹⁰В их авторы привлекали довольно ограниченный экспериментальный материал и по числу каналов реакций, и по энергии возбуждения, что связано с возрастающей сложностью анализа многоканальной задачи в широком энергетическом диапазоне, а также с бедностью и противоречивостью экспериментальных данных. В работах рассматривались выходные каналы реакции ⁹Ве + *p*: при $E_x = 6-8$ МэВ – p_0 , d_0 и α_0 -каналы [6–9]; при $E_x = 8-10$ МэВ [10–13, 15–17] – p_0 , n_0 и α_2 -каналы; при $E_x = 8.8-11.6$ МэВ – p_0 , n_0 , α_0 , α_2 -каналы [14].

Наши исследования выполнены в области $E_x = 6.5-19.5 \text{ МэВ}$, использовались экспериментальные данные реакций ⁹Be $(p,p_0)^9$ Be, ⁹Be $(p,p_1)^9$ Be* (1.670 МэВ), ⁹Be $(p,p_2)^9$ Be* (2.430 МэВ), ⁹Be $(p,n_0)^9$ B, ⁹Be $(p,d_0)^8$ Be, ⁹Be $(p,\alpha_0)^6$ Li, ⁹Be $(p,\alpha_2)^6$ Li* (3.5618 МэВ), ⁷Li(³He, $p_0)^9$ Be. *R*-матричным расчетам предшествовала большая подготовительная работа по уточнению и экспертизе экспериментальных данных.

1. ЭНЕРГЕТИЧЕСКАЯ КАЛИБРОВКА УСКОРИТЕЛЯ ДЛЯ УТОЧНЕНИЯ ПОЛОЖЕНИЯ РЕЗОНАНСОВ РЕАКЦИЙ ⁹Be(*p*,*n*₀)⁹B и ⁹Be(*p*,*α*₂)⁶Li* В ОБЛАСТИ ЭНЕРГИИ ПРОТОНОВ 2.5–2.7 МэВ

В наших исследованиях [3] реакции ${}^{9}\text{Be}(p,\alpha_{2}){}^{6}\text{Li}^{*}$ энергетическая калибровка ускорителя, выполненная по реперным точкам, относительно далеким от энергии ее резонанса в области Е_р 2.56 МэВ (наблюдаемый максимум при 2.5665 МэВ), вызывала некоторое сомнение. В [5] мы по резонансной реакции ${}^{27}\text{Al}(p,\gamma_2){}^{28}\text{Si}^*$ (4.618 МэВ) с реперной точкой 2.4883(10) МэВ получили другое положение наблюдаемого максимума при 2.5749(10) МэВ. Приведем результаты другого эксперимента, когда одновременно проводились регистрация γ-квантов и нейтронов под углом 0° к пучку протонов соответственно из реакций ${}^{9}\text{Be}(p,\alpha_{2}){}^{6}\text{Li}^{*}, {}^{9}\text{Be}(p,n_{0}){}^{9}\text{B}$ и калибровка энергетической шкалы ускорителя по регистрации γ -квантов из реакций ⁷⁶Ge(*n*,*n*')⁷⁶Ge* (563 кэВ), $^{74}\text{Ge}(n,n')^{74}\text{Ge}^*$ (596 k), $^{72}\text{Ge}(n,n')^{72}\text{Ge}^*$ (691 k), ⁷²Ge(n,n')⁷²Ge* (834 кэВ) [18]. Для регистрации нейтронов использовался всеволновой счетчик, а γ -квантов — HPGE-детектор REGE (диаметр 45 мм, высота 47.5 мм), находящийся на расстоянии 150 мм от бериллиевой мишени толщиной 24 мкг · см⁻² (в энергетической шкале 2.7 кэВ для энергии протонов 2.5 МэВ) на танталовой подложке. Реакции на изотопах германия были вызваны в самом германиевом детекторе мишенными нейтронами из реакции ${}^{9}\text{Be}(p,n_0){}^{9}\text{B}$. Нейтроны, как и у-кванты, падали на цилиндрическую поверхность детектора REGE. Для энергетической калибровки ускорителя по нейтронным порогам *Е_{n,th}* реакций на изотопах германия были рассчитаны протонные пороговые энергии E_{p,th}, при превышении которых рождаются нейтроны с энергиями выше $E_{n,th}$. В расчетах по релятивистской кинематике $E_{p,th}$ использовались значения масс p, n, ядер ⁹Ве, ⁹В, определенные по дефектам масс [19-21] с учетом энергии связи атомных электронов. Наиболее отчетливо пороги образования ү-квантов проявились в реакциях ⁷⁴Ge(*n*,*n*')⁷⁴Ge*(596 кэВ) и ⁷²Ge(*n*,*n*')⁷²Ge*(691 кэВ) (рис. 1), значения *E_{p,th}* которых равны 2.5285(1) и 2.6201(1) МэВ соответственно. Среднее значение наблюдаемой резонансной энергии составило 2.5739(10) МэВ, которое на 7.4 кэВ больше оцениваемого максимума в данных [4]. В этих же исследованиях были измерены дифференциальные сечения реакции ${}^{9}\text{Be}(p,n_0){}^{9}\text{B}$ для угла 0°, в энергетической зависимости которых максимум находится при $E_p = 2.571$ МэВ (см. далее).

2. ПОЛУЧЕНИЕ УГЛОВЫХ РАСПРЕДЕЛЕНИЙ α-ЧАСТИЦ РЕАКЦИИ ⁹Ве(р,α₂)⁶Li* ПО ФОРМЕ γ-ЛИНИИ

Дифференциальные сечения этой реакции впервые были получены косвенным методом в [10] при $E_p = 2.4-2.6$ МэВ из анализа формы γ -линии с доплеровским уширением. В этой же работе проведен *R*-матричный анализ с целью установления квантовых чисел практически совпадающих уровней составного ядра ¹⁰В, возбуждаемых в области $E_p = 2.56$ МэВ. Этим же методом при $E_p =$ = 2.3-4.5 МэВ получены и наши данные [3]. Измерения зависимости формы γ -линии от энергии протона изложены в [4].

Использованная нами процедура получения угловых распределений в системе центра масс (с.ц.м.) заключалась в анализе спектров γ -квантов с доплеровским смещением, зарегистрированных [3] под нулевым углом относительно направления падающего на мишень пучка протонов. Ядро ⁶Li* (3.5618 МэВ) за время своей жизни 0.8 · 10⁻¹⁶ с. проходит путь 10⁻⁶ см, фактически испуская γ -кванты в месте своего рождения и, следовательно, можно не учитывать его торможение. Поэтому угол испускания γ -кванта θ_{γ} по отношению к направлению движения ядра ⁶Li* равен углу θ_L вылета этого ядра относительно движения пучка протонов. Приведем основные моменты вывода расчетных формул спектров.

 E_n , МэВ

Реакция	Энерговыделение реакции, МэВ	Энергия налетающих частиц л.с.к., МэВ	Тип данных	Угол рассеяния в л.с.к., град	Ошибка, %	Работа
		2.2-2.8	$d\sigma/d\Omega$	163, 125*		[11]
${}^{9}\text{Be}(p,p_{0})$	0	2-3.8	$d\sigma/d\Omega$	65-160*	13	[12]
		2.49-2.64	$d\sigma/d\Omega$	83, 120, 135, 145	3	[10]
$^{9}\text{Be}(p,p_{1})$	-1.684	4.2–6.1	$d\sigma/d\Omega$	45, 125, 150		[24]
$^{9}\text{Be}(p,p_{2})$	-2.430	4.2–6.1	$d\sigma/d\Omega$	45, 84, 115, 150		[24]
9 Be(p, α_0)	2.125	0.8–2.9	$d\sigma/d\Omega, \sigma$	90	7	[6]
⁹ Be(p, α_2)	-1.437	2.3-4.5	$d\sigma/d\Omega, \sigma$	0-180*	5	[3, 4]
⁹ D ()	1 850	2 20		0*	5	[13]
$Be(p,n_0)$	-1.850	2-3.9	<i>a</i> o/ <i>a</i> sz	0*	5	Наст.
		0.77-3.025	$d\sigma/d\Omega, \sigma$	15-135	7	[6]
9 D (1)	0.560	4-5.9	$d\sigma/d\Omega$	50	4.5	[7]
$Be(p, a_0)$	0.300	0.29-0.89	$d\sigma/d\Omega, \sigma$	90	7	[8]
		0.03-0.7	σ		6	[9]
71:(311	11 200	0.9–2.5	$d\sigma/d\Omega$	70, 130	5	[25]
$^{\prime}\text{Li}(^{3}\text{He},p_{0})$	11.200	2.2-3.2	$d\sigma/d\Omega$	15-160*	7	[26]

Таблица 1. Экспериментальные данные, использованные в анализе

* В с.ц.м.

Количество $dN_{^{6}Li^{*}}$ ядер ⁶Li^{*} (3.5618 МэВ), образующихся и вылетающих в телесный угол $d\Omega$, определяется как

$$dN_{^{6}\text{Li}^{*}} = -2\pi N_{p}C \frac{d\sigma}{d\Omega}(\theta_{L})d\cos\theta_{L}, \qquad (1)$$

где N_p — количество протонов, упавших на мишень толщиной C, $\frac{d\sigma}{d\Omega}(\Theta_L, \varphi_L)$ — дифференциальное сечение реакции в лабораторной системе координат (л.с.к.) для полярного Θ_L и азимутального φ_L углов. По количеству $dN_{\epsilon_{\text{Li}^*}}(1)$ определяем количество dN_{γ} зарегистрированных квантов:

$$\frac{dN_{\gamma}}{dE_{\gamma}} = -2\pi N_{p}C \cdot \varepsilon_{\gamma} \frac{1}{E_{\gamma 0}\beta_{c}} \frac{d\sigma}{d\Omega}(\theta_{c}) \equiv$$

$$\equiv -2\pi N_{p}C \cdot \varepsilon_{\gamma} \frac{1}{E_{\gamma 0}\beta_{c}} \sum_{l} A_{l}P_{l}(\theta_{c}),$$
(2)

где ε_{γ} – внутренняя эффективность регистрации, зависящая от энергии кванта E_{γ} , $E_{\gamma 0} = 3.5618$ МэВ, β_c – скорость излучателя в с.ц.м., θ_c – угол вылета в с.ц.м., дифференциальное сечение разложено в ряд по полиномам Лежандра $P_l(\theta_c)$ с коэффициентами A_l , l = 0, 1, 2... Для определения дифференциальных сечений образования α -частиц надо выразить угол θ_c через угол вылета θ_c^{α} , $\theta_c = \pi - \theta_c^{\alpha}$:

$$\frac{dN_{\alpha}}{dE_{\gamma}} = 2\pi N_{p}C \cdot t_{m} \cdot \varepsilon_{\gamma} \frac{1}{E_{\gamma 0}\beta_{c}} \sum_{l} A_{l}P_{l}(\cos\theta_{c}^{\alpha}), \qquad (3)$$

где учтена энергетическая зависимость эффективности регистрации, dN_{α} – количество альфачастиц, $t_m = 1 - 1.03$ – фактор мертвого времени.

Совсем недавно дифференциальные сечения этой реакции были измерены при $E_p = 2.3-6$ МэВ прямым методом [14] — применялась обратная кинематика, когда на легкую мишень Н налетало тяжелое ядро ⁹Ве.

3. ЭКСПЕРИМЕНТАЛЬНЫЕ ДАННЫЕ ПО КАНАЛАМ РЕАКЦИЙ ⁹Be + *p* и ⁷Li + ³He, ИСПОЛЬЗОВАННЫЕ В *R*-АНАЛИЗЕ

Экспериментальные данные по каналам реакций, использованные в анализе, представлены в табл. 1. Характеристики остаточных ядер взяты из [22, 23].

В анализе использованы наши данные по дифференциальным и полным сечениям реакции ${}^{9}\text{Be}(p,\alpha_2){}^{6}\text{Li}^*$, по дифференциальным сечениям реакции ${}^{9}\text{Be}(p,n_0){}^{9}\text{B}$ для угла 0°. Энергии протонов в этих данных соответствуют энергетической калибровке ускорителя (см. раздел 1), при выполнении которой также были получены относительные данные по реакции ${}^{9}\text{Be}(p,n_{0}){}^{9}\text{B}$. Абсолютизация этих данных была выполнена в два этапа. Сначала по данным [15], с которыми в энергетической зависимости наши данные хорошо согласуются. Затем дифференциальные сечения были увеличены в 1.6 раза с учетом того, что данные [15] по полным сечениям образования нейтронов (где основной канал — реакция (p, n_0)) занижены относительно "эталонных" данных [16]. Таким же путем были абсолютизированы данные [13], при этом смещенные в сторону увеличения энергии протонов на 19.3 кэВ.

В настоящем *R*-матричном анализе не использовались данные, полученные на поляризованных пучках, а также значения сечений из работ [14, 25, 26], существенно отличающиеся от наших данных.

4. РЕЗУЛЬТАТЫ АНАЛИЗА

R-матричное многоканальное описание части экспериментальных данных показано на рис. 2–4, где значения сечений представлены в с.ц.м., а энергии частиц, вызывающих реакции, в л.с.к. В табл. 2 приведены характеристики уровней составного ядра ¹⁰В, извлеченные в этом анализе: E_x , J^{π} , Γ – энергия, спин, четность, полная ширина уровня возбуждения, соответственно, Γ_i^{sl} – парциальная ширина *i*-канала с данными спином канала *s* и орбитальным моментом *l*.

Реакция ⁹*Ве*(*p*,*p*₀)⁹*Ве*

Наиболее хорошо описываются дифференциальные сечения при углах $\theta_c = 139.5^\circ$, 148.6°, 163° и несколько хуже при $\theta_c = 89.3^\circ$, 125.5° (рис. 2). Наибольший вклад вносят состояния с $E_x = 8.525$ (2⁻), 8.838 (1⁻), 8.882 (3⁻), 8.898 (2⁺), 8.924 (1⁻), 8.928 (2⁺) МэВ, а уровни с меньшими (возбуждаемые в реакции (p,d_0)) и большими энергиями (возбуждаемые в реакциях (p,p_1), (p,p_2), (³He, p_0)) являются "фоновыми" в этой области.

Реакция ⁹Ве(p,α₂)⁶Li* (3.5618 МэВ)

Хорошее описание дифференциальных сечений (рис. 3) получено при энергии $E_p = 2.541 - 2.621$ МэВ – в области возбуждения $E_x = 8.876 - 8.946$ МэВ, в которой проявляются два уровня с $J^{\pi} = 3^{-}$ и 2⁺ [10], для которых мы получили значение энергии 8.882 и 8.898 МэВ соответственно. При $E_p = 2.631 - 4.533$ МэВ ($E_x = 8.9 - 10.7$ МэВ), расчетная кривая также неплохо согласуется с

Рис. 2. Описания дифференциальных сечений реакции ⁹Ве $(p,p_0)^9$ Ве при θ_c : □ −148.6° [10] (смещено на +50 мб · cp⁻¹); △ − 139.5° [10]; ■ − 163° [11]; ▼ − 89.3° [10] (смещено на −30 мб · cp⁻¹; ◄ − 125.5° [10] (смещено на +120 мб · cp⁻¹).

экспериментальными данными. Для $E_p = 2.384 - 2.511$ МэВ ($E_x = 8.731 - 8.845$ МэВ) получено хорошее описание в интервале $50^\circ \le \theta_c \le 150^\circ$, однако для передних и задних углов наблюдаются расхождения в экспериментальных и расчетных данных. Функция возбуждения полного сечения хорошо воспроизводится при всех энергиях.

Реакция ⁹Ве(p,n₀)⁹В

Хорошее описание (рис. 4) получено в области энергии $E_p = 2.5 - 2.8 \text{ МэВ} (E_x = 8.85 - 9.1 \text{ МэВ})$, где наиболее сильно проявляются резонансы при 8.882 МэВ, 3⁻ и 8.898 МэВ, 2⁺. При описании данных в области возбуждения $E_x > 9 \text{ МэВ}$ были обнаружены новые уровни с энергиями $E_x = 8.928 (2^+)$, 9.219 (1⁻), 9.995 (2⁺) МэВ, отсутствующие в [22, 23].

В анализе данных по реакциям ${}^{9}\text{Be}(p,p_{1}){}^{9}\text{Be}^{*}$ (1.670 МэВ), ${}^{9}\text{Be}(p,p_{2}){}^{9}\text{Be}^{*}$ (2.30 МэВ), ${}^{9}\text{Be}(p,d_{0}){}^{8}\text{Be}$, ${}^{9}\text{Be}(p,\alpha_{0}){}^{6}\text{Li}$, ${}^{7}\text{Li}({}^{3}\text{He},p_{0}){}^{9}\text{Be}$ обнаружены новые состояния (табл. 2), так как имеющихся уровней для описания этих данных было недостаточно.

В табл. 3 указаны характеристики уровней, определенные в результате нашего анализа (данные табл. 2) и имеющиеся в литературе. Состояния с близкими значениями энергии возбуждения объединены в одну строку таблицы.

Для ранее известных состояний (6.875 (1⁻), 8.887 (3⁻), 8.895 (2⁺), 10.825 (2⁺) МэВ) получены

E_x , J^{π}	Г, кэВ	канал	Γ_i^{sl} , кэ ${ m B}$	S	l	E_{x}, J^{π}	Г, кэВ	канал	Γ_i^{sl} , кэ ${ m B}$	S	l
			59.054	1	0				20.169	1	1
		pp_0	$4.841 \cdot 10^{-3}$	1	2				$240.231 \cdot 10^{-3}$	1	3
6.896, 1-	198.687		$34.066 \cdot 10^{-3}$	2	2			канал Γ_i^{sl} , кэВ pp_0 $240.231 \cdot 10^{-3}$ pp_0 $240.231 \cdot 10^{-3}$ $117.140 \cdot 10^{-3}$ $117.140 \cdot 10^{-3}$ pd_0 119.970 $p\alpha_0$ 183.393 $p\alpha_0$ 183.393 $p\alpha_0$ 3.122 pd_0 3.122 pd_0 $120.651 \cdot 10^{-3}$ $p\alpha_0$ $120.651 \cdot 10^{-3}$ $p\alpha_0$ 189.197 pp_0 4.865 $p\alpha_0$ 15.570 pd_0 3.818 $p\alpha_0$ 810.934 $p\alpha_0$ 810.934 $p\alpha_0$ 6.554 pn_0 12.124 pn_0 12.124 pd_0 29.163 pd_0 201.769 pn_0 481.338 pp_0 39.354 pn_0 39.354 pn_0 39.354	$117.140 \cdot 10^{-3}$	2	1
		pd_0	88.820	1	1	7.635, 21	323.896		$7.132 \cdot 10^{-3}$	2	3
		$p\alpha_0$	50.774	1	1				1	2	
7.025.2- (5.012		2.284	1	2			$p\alpha_0$	183.393	1	2	
	(5.012	pp_0	$187.093 \cdot 10^{-3}$	2	2				76.086	1	1
7.235, 3	65.813	pd_0	14.439	1	3			pp_0	51.946	2	1
		$p\alpha_0$	48.903	1	3		125 410		3.759	2	3
			2.443	1	1	7.806, 1	135.418	nd	3.122	1	0
			$364.102 \cdot 10^{-3}$	1	3			pa_0	$385.114 \cdot 10^{-3}$	1	2
7.356, 2+	166.062	pp_0	1.081	2	1			$p\alpha_0$	$120.651 \cdot 10^{-3}$	1	2
	166.963		$204.462 \cdot 10^{-3}$	2	3	8.525, 2-	1391.67	<i>pp</i> ₀	189.197	1	2
		pd_0	104.986	1	2				4.865	2	0
		$p\alpha_0$	57.885	1	2				15.570	2	2
		<i>pp</i> ₀	9.074	1	2			nd.	252.856	1	1
	, 2- 340.381		69.080	2	0			pu ₀	33.818	1	3
			9.608	2	2			pα	810.934	1	1
7.424, 2 ⁻		pd_0	33.315	1	1			1 0	84.431	1	3
			$556.953 \cdot 10^{-3}$	1	3			<i>pp</i> ₀	14.541	1	2
		$p\alpha_0$	179.329	1	1				6.399	2	0
			39.419	1	3				6.554	2	2
			1.893	1	1	8 755 2-	277 827		$768.273 \cdot 10^{-3}$	1	2
		pp_0	93.764	2	1	0.755,2	277.027		12.124	2	0
7 4 4 1 1 +	119.016		$360.133 \cdot 10^{-3}$	2	3				6.509	2	2
7.111, 1	11,1010	nd_0	15.237	1	0			ndo	29.163	1	1
		<i>F</i> ~ 0	$676.273 \cdot 10^{-3}$	1	2			<i>r</i> • 0	201.769	1	3
		$p\alpha_0$	7.086	1	2				481.338	1	0
			223.663	1	0			pp_0	39.354	1	2
		pp_0	19.885	1	2				83.616	2	2
7,499, 1-	391.394		9.822	2	2	8.838, 1-	819.064	pn ₀	166.697	1	2
									11.380	1	2
		pd_0	$179.082 \cdot 10^{-3}$	1	1				4.596	2	2
								$p\alpha_2$	32.083	0	1

Таблица 2. Характеристики уровней составного ядра ¹⁰В, используемые в *R*-матричном анализе. Энергии уровней E_x даны в МэВ

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 10 2020

Таблица 2.	Продолжение
------------	-------------

Е _х , Ј ^π	Г, кэВ	канал	Γ_i^{sl} , кэВ	S	l	E_{x}, J^{π}	Г, кэВ	канал	Γ_i^{sl} , кэ ${ m B}$	S	l
			1215.263	1	0			<i>pp</i> ₀	13.561	1	0
		pp_0	141.378	1	2				4.748	1	2
			139.246	2	2				1.467	2	2
8.879, 1-	1523.962		$738.6 \cdot 10^{-3}$	1	0	8.924, 1 ⁻	130.278		3.941	1	0
		pn_0	9.762	1	2			pn_0	14.202	1	2
			14.043	2	2				26.746	2	2
		$p\alpha_2$	3.532	0	1			$p\alpha_2$	65.613	0	1
		nno	47.418	1	2				44.649	1	0
		PP0	104.746	2	2			pp_0	$609.209 \cdot 10^{-3}$	1	2
8.882, 3-	169.937	nn.	17.606	1	2				35.462	2	2
		pn_0	$165.028 \cdot 10^{-3}$	2	2	9.219, 1-	997.375		530.239	1	0
		$p\alpha_2$	$2.549 \cdot 10^{-3}$	0	3			pn_0	18.649	1	2
			$717.079 \cdot 10^{-3}$	1	1	-			8.024	2	2
	55.972	<i>pp</i> ₀	$532.820 \cdot 10^{-3}$	1	3			$p\alpha_2$	359.743	0	1
			9.871	2	1	9.995, 2+	2628.50	20	583.596	1	1
			1.070	2	3				54.823	1	3
8.898, 2+		pn ₀	12.480	1	1			PP_0	657.938	2	1
			$261.219 \cdot 10^{-3}$	1	3				64.897	2	3
			9.762	2	1				304.051	1	1
			$68.986 \cdot 10^{-3}$	2	3			pn ₀	11.146	1	3
		$p\alpha_2$	21.121	1	2				796.490	2	1
			$770.174 \cdot 10^{-3}$	1	1				6.551	2	3
		<i>pp</i> ₀	$125.152 \cdot 10^{-3}$	1	3			$p\alpha_2$	149.010	1	2
			8.564	2	1				29.907	1	1
			$183.140 \cdot 10^{-3}$	2	3			nn	4.735	1	3
			209.152	1	1			PP0	276.138	2	1
		nи	$279.163 \cdot 10^{-3}$	1	3				3.877	2	3
$8.928, 2^+$	238.912	pn_0	1.418	2	1			pn_0	42.786	1	1
			$157.937 \cdot 10^{-3}$	2	3	10.8, 2+	483.453	$p\alpha_2$	11.983	0	2
								nn.	$2.766 \cdot 10^{-3}$	0	2
								PP1	3.663	1	2
		$p\alpha_2$	18.264	0	2			<i>pp</i> ₂	66.361	2	1
									$617.628 \cdot 10^{-6}$	2	3
									44.985	3	1

Таблица 2. Окончание

<i>Е_х, Ј^π</i>	Г, кэВ	канал	Γ_i^{sl} , кэ ${ m B}$	S	l	E_{x}, J^{π}	Г, кэВ	канал	Γ_i^{sl} , кэ ${ m B}$	S	l
			659.423	1	2			<i>pp</i> ₀	206.122	1	3
			1125.752	2	0				2847.46	2	1
11.0, 2-		pp_0	199.060	2	2				263.124	2	3
			1056.569	1	2	11.050.0+	41(0 757	<i>pp</i> ₁	50.481	1	2
	3065.263		7.168	1	1	11.359, 3	4168.757		94.300	2	1
		pp_1	$2.443 \cdot 10^{-3}$	1	3			22	19.825	2	3
			7.649	2	0			PP_2	679.732	3	1
		<i>pp</i> ₂	$3.495 \cdot 10^{-3}$	2	2				7.713	3	3
			9.636	3	2				17.312	1	1
			5485.349	1	0			nn.	43.675	1	3
		pp_0	191.584	1	2		492.815	<i>pp</i> ₀	393.395	2	1
			3.284	2	2				37.973	2	3
		$p\alpha_2$	1.159	0	1	18.363, 2 ⁺		³ Hep ₀	$2.77 \cdot 10^{-3}$	1	1
	5666.725	<i>pp</i> ₁	<u>81 282 , 10−3</u>	0	1	-			$98.8 \cdot 10^{-3}$	1	3
11.05 1-			81.382 · 10	0	1				$319 \cdot 10^{-3}$	2	1
11.03, 1			$452.506 \cdot 10^{-3}$	1	1				$38.3 \cdot 10^{-3}$	2	3
			433.300 . 10	1	1				17.949	1	2
		<i>pp</i> ₂	$3.395 \cdot 10^{-3}$	2	2			pp_0	387.541	2	0
				2	2	10 706 0-			66.431	2	2
			$1.182 \cdot 10^{-3}$	3	2	18.796, 2		³ He <i>p</i> ₀	$5.35 \cdot 10^{-3}$	1	2
				5	2				1.282	2	0
			116.849	1	2				$28.9\cdot 10^{-3}$	2	2
		<i>pp</i> ₀	228.224	2	0			<i>pp</i> ₀	367.228	1	1
			1263.08	2	2	19.271, 1 ⁺			13.897	2	1
			22.878		1		116 000		29.742	2	3
		pp_1	$147 435 \cdot 10^{-3}$	1	1		410.808		$2.15 \cdot 10^{-3}$	1	1
			147.433 10		1	3		$^{3}\text{He}p_{0}$	3.243	2	1
11.1, 2-	1788.773		145.212	2	0				2.696	2	3
			5.739	2	2				426.366	1	0
								pp_0	1410.84	1	2
		pp_2				20 332 1-	1959.283		4.747	2	2
			6.644	3	2	20.332, 1		³ He <i>p</i> ₀	1.720	1	0
									61.098	1	2
									54.512	2	2

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 10 2020

Puc. 3. *a*, *e* – Описание дифференциальных сечений реакции ⁹Be(p,α_2)⁶Li* (3.5618 MэB, $J^{\pi} = 0^+$) при $E_p = 2.541-2.631$ MэB (*a*) и $E_p = 2.571$ MэB (*b*); *σ* – полное сечение реакции ⁹Be(p,α_2)⁶Li* (3.5618 MэB, $J^{\pi} = 0^+$).

Рис. 4. Описание дифференциальных сечений реакции 9 Ве(p, n_0) 9 В ($\theta_c = 0^{\circ}$): □ –данные [13], ■ – наши данные (смещено на + 7 мб · cp⁻¹).

новые значения энергий (6.895, 8.882, 8.898, 10.8 МэВ) и ширин. Для девяти уровней значения параметров, определенные нами, не совпадают с принятыми в литературе. Не подтверждено существование 16 уровней.

ЗАКЛЮЧЕНИЕ

Проведен многоканальный *R*-матричный анализ реакций с образованием составного ядра ¹⁰В при E_x от 6.5 до 19.5 МэВ. Был использован весь

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 10 2020

ГЕНЕРАЛОВ, СЕЛЯНКИНА

E_x , МэВ	J^{π}	Г, кэВ	Работа	<i>Е_x</i> , МэВ	J^{π}	Г, кэВ	работа
6.896	1-	198.687	Наст.	8.898	2+	55.972	Наст.
6.875	1-	120 ± 5	[22, 23]	8.892 ± 0.005	2^{+}	36 ± 4	[12]
6.880	1-	145	[29]	8.895 ± 0.001	2+	39 ± 1	[22, 23]
7.004	3+	98	[22, 23]	8.894 ± 0.002	2+	40 ± 1	[10]
7.235	3-	65.813	Наст.	8.89	2+	38 ± 3	[17]
7.356	2+	166.963	Наст.	8.89	2 ⁺	90 ± 20	[11]
7.424	2-	340.381	Наст.	8.894 ± 0.002	2 ⁺	34 ± 4	[14]
7.428	1-	94	[22, 23]	8.924	1-	130.278	Наст.
7.441	1+	119.016	Наст.	8.928	2+	238.912	Наст.
7.430 ± 10	2-	100 ± 10	[22, 23]	8.93 ± 0.01	1 ⁺	45 ± 5	[12]
7.437	1-	130 ± 10	[29]	8.95	(1 ⁺ 3 ⁺)	40 ± 10	[11]
7.470 ± 4	2+	65	[22, 23]	9.03	3-	45 ± 10	[11]
7.469	2+	65 ± 10	[29]	9.219	1-	997.375	Наст.
7.479 ± 2	2-	74 ± 4	[22, 23]	9.58 ± 60		257 ± 64	[22, 23]
7.480	2-	80 ± 8	[29]	9.700		630	[22, 23]
7.499	1-	391.394	Наст.	9.995	2+	2628.502	Наст.
7.5599 ± 0.4	0^{+}	2.65 ± 0.18	[22, 23]	10.00 ± 0.09	3-	450 ± 10	[12]
7.564	0^{+}	3.3	[29]	10.36 ± 0.09	2-	1000 ± 100	[12]
7.635	2+	323.896	Наст.	10.8	2+	483.453	Наст.
7.666 ± 0.027	1+	247	[22, 23]	10.825 ± 9	$(2^+ 3^+ 4^+)$	350 ± 7	[22, 23]
7.665	1+	250 ± 20	[29]	10.83 ± 0.09	2+	400 ± 100	[12]
7.750 ± 0.030	2-	210	[22, 23]	10.7 ± 0.1	2+	300 ± 100	[14]
7.795	2-	265 ± 30	[29]				
7.806	1+	135.418	Наст.	11.0	2-	3065.263	Наст.
7.811 ± 0.017	1-	260	[22, 23]	11.0	0^+	3700_{-600}^{+200}	[14]
7.960 ± 0.070		285	[28]				
8.070 ± 0.050	2+	800	[22, 23]	11.05	1-	5666.725	Наст.
8.07	2 ⁺	800	[29]	11.1	2-	1788.773	Наст.
8.45 ± 0.010	2-	100 ± 20	[11]	11.359	3+	4168.757	Наст.
8.525	2-	1391.67	Наст.	11.511 ± 0.030		316 ± 44	[22, 23]
8.66	2+	200 ± 20	[12]				
8.67	3-	35 ± 10	[11]	11.63	1-	480 ± 150	[14]
8.68	(1 ⁺ 2 ⁺)	220	[22, 23]	12.564 ± 0.026	$(0^+ 1^+ 2^+)$	106 ± 26	[22, 23]
8.755	2-	277.827	Наст.	_			
8.78 ± 0.010	3-	180 ± 10	[12]	13.494 ± 0.050	$(0^+ 1^+ 2^+)$	300 ± 50	[22, 23]
8.79	3+	50 ± 10	[11]				

Таблица 3. Уровни ядра ¹⁰В, используемые в нашем *R*-матричном анализе, и представленные в литературе

E_x , МэВ	J^{π}	Г, кэВ	Работа	<i>Е_x</i> , МэВ	J^{π}	Г, кэВ	работа
8.838	1-	819.064	Наст.	14.34		800	[22, 23]
8.879	1-	1523.962	Наст.	18.2		1500	[22, 23]
8.882	3-	169.937	Наст.	18.363	2+	492.815	Наст.
8.880 ± 0.005	3-	105 ± 5	[12]	18.430	2-	340	[22, 23]
8.887 ± 0.003	3-	96 ± 4	[22, 23]	18.796	2-	473.237	Наст.
8.889 ± 0.006	3-	100 ± 20	[10]	18.8	(2 ⁺ 1 ⁺)	600	[22, 23]
8.89	3-	85 ± 10	[17]	19.271	1 ⁺	416.808	Наст.
8.89	3-	30 ± 5	[11]	19.290	2-	190	[22, 23]
8.898 ± 0.010	3-	80 ± 10	[14]	20.1	1-	350	[22, 23]
				20.332	1-	1959.283	Наст.

Таблица 3. Окончание

существующий экспериментальный материал. Определены новые уровни ¹⁰В и уточнены характеристики уже известных состояний. Наши численные данные по реакциям ⁹Ве (p,n_0) ⁹В и ⁹Ве (p,α_2) ⁶Li* (3.5618 МэВ) будут переданы в международную библиотеку экспериментальных данных EXFOR.

Авторы выражают благодарность одному из разработчиков кода AZURE2 Ричарду де Боеру (Richard de Boer) за помощь в освоении программы.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Azuma R.E., Uberseder E., Simpson E.C. et al.* // Phys. Rev. C. 2010. V. 81. Art. № 045805.
- 2. Лейн А., Томас Р. Теория ядерных реакций при низких энергиях. М.: Издательство иностранной литературы, 1960.
- 3. Генералов Л.Н., Селянкина С.М., Романихин В.П. // Сб. тез. "Ядро-2017" (Алма-Ата, 2017). С. 141.
- Генералов Л.Н., Абрамович С.Н., Звенигородский А.Г. и др. // Изв. РАН. Сер. физ. 2003. Т. 67. С. 1462; Generalov L.N., Abramovich S.N., Zvenogorodskii A.G. et al. // Bull. Russ. Acad. Sci. Phys. 2003. V. 67. P. 1616.
- 5. Генералов Л.Н., Карпов И.А., Федотов Д.А. // Сб. тез. "Ядро-2014". (Минск, 2014). С. 202.
- Weber G., Davis L.W., Marion J.B. // Phys. Rev. 1956.
 V. 104. № 5. P. 1307.
- Read F.H., Calvet J.M. // Proc. Phys. Soc. 1961. V. 77. P. 65.
- Bertrand F., Greiner G., Pornet J. // Rapport CEA-R-3575. 1968.
- Sierk A.J., Tombrello T.A. // Nucl. Phys. A. 1973. V. 210. P. 341.
- Kiss A., Koltay E., Szabo G. et al. // Nucl. Phys. A. 1977. V. 282. P. 44.

- Машкаров Ю.Г., Дейнеко А.С., Слабоспицкий Р.П. и др. // Изв. АН СССР. Сер. физ. 1976. Т. 40. С. 1218; Mashkarov Yu.G., Deineko A.S., Slabospitskii R.P. et al. // Bull. Acad. Sci. USSR. Phys. 1976. V. 40. P. 100.
- 12. Allab M., Boucenna A., Haddad M. // J. Phys. 1983. V. 44. P. 579.
- 13. *Richards H.T., Smith R.V., Browne C.P.* // Phys. Rev. 1950. V. 80. P. 524.
- 14. Kuchera A.N., Rogachev G.V., Goldberg V.Z. et al. // Phys. Rev. C. 2011 V. 84. Art. № 054615.
- Marion J.B., Bonner T.W., Cook C.F. // Phys. Rev. 1955.
 V. 100. P. 91.
- Gibbons J.H., Macklin R.L. // Phys. Rev. 1959. V. 114. P. 571.
- 17. Marion J.B. // Phys. Rev. 1956. V. 103. P. 713.
- 18. Lister D., Smith A.B. // Phys. Rev. 1969. V. 183. P. 183.
- 19. *Firestone R.B.* Table of Isotopes CD-ROM. 8th edition. 1998. Lawrence Berkeley Laboratory.
- 20. Audi G., Bersillion O., Blachot J. et al. // Nucl. Phys. A. 2003. V. 729. P. 3.
- 21. Wapstra A.H., Audi G., Thibauld C. // Nucl. Phys. A. 2003. V. 729. P. 129.
- 22. Ajzenberg-Selove F. // Nucl. Phys. A. 1988. V. 490. P. 1.
- 23. *Tilley D.R., Kelley J.N., Godwin J.L. et al.* // Nucl. Phys. A. 2004. V. 745. P. 155.
- 24. *Yasue M., Ohsawa T., Fuiwara N. et al.* // J. Phys. Soc. Japan. 1972. V. 33. P. 265.
- 25. Bondouk I.I., Asfour F., Saleh Z. et al. // Rev. Roum. Phys. 1975. V. 20. P. 1095.
- 26. Lru Y.C. // Chin. J. Phys. 1972. V. 10. P. 76.
- 27. Rath D.P., Boyd R.N., Hausman H.J. et al. // Nucl. Phys. A. 1990. V. 515. P. 338.
- Leask P.J., Freer M., Clarke N.M. et al. // Phys. Rev. C. 2001. V. 63. Art. № 034307.
- 29. *Tsan Mo, Hornyak W.F.* // Phys. Rev. 1969. V. 187. P. 1220.