УЛК 621.039.743

РАСЧЕТНЫЕ ИССЛЕДОВАНИЯ РАДИОТОКСИЧНОСТИ ОБЛУЧЕННОГО ТОПЛИВА ВВЭР-1200 И ЗАПАСОВ АКТИВНОСТИ ПРИ ДОЛГОСРОЧНОМ ОБРАЩЕНИИ С ОТРАБОТАВШИМ ЯДЕРНЫМ ТОПЛИВОМ БЕЛОРУССКОЙ АЭС

© 2020 г. Ю. А. Корчева^{1, *}, Н. В. Горбачева¹, Н. Д. Кузьмина¹, Н. В. Кулич¹, А. М. Петровский¹

¹Государственное научное учреждение "Объединенный институт энергетических и ядерных исследований — Сосны" Национальной академии наук Беларуси, Минск, Республика Беларусь

*E-mail: julia.korchova@sosny.bas-net.by

Поступила в редакцию 11.05.2020 г. После доработки 02.06.2020 г. Принята к публикации 26.06.2020 г.

Представлены результаты расчетов активностей продуктов деления и актинидов для средней глубины выгорания топлива Белорусской АЭС (55.6 MBт \cdot сут \cdot т $^{-1}$ U). Получены темпы снижения суммарной активности отработавшего ядерного топлива (ОЯТ) в зависимости от времени выдержки. На основании проведенных расчетных исследований характеристик радиотоксичности ОЯТ ВВЭР-1200 определены перечни радиационно-опасных радионуклидов, определяющих потенциальную опасность на различных фазах обращения с ОЯТ Белорусской АЭС. Полученные результаты имеют значение для принятия решений по экологически приемлемому варианту обращения с отработавшим ядерным топливом, представленные в Стратегии обращения с ОЯТ Белорусской АЭС.

DOI: 10.31857/S0367676520100154

ВВЕДЕНИЕ

В настоящее время в Республике Беларусь завершается этап сооружения Белорусской АЭС и идет подготовка к вводу ее в эксплуатацию в составе двух энергоблоков АЭС-2006 с ВВЭР-1200. Объединенный институт энергетических и ядерных исследований – Сосны с участием АО "Техснабэкспорт", как базового отраслевого центра российских технологий по обращению с отработавшим ядерным топливом (ОЯТ), разработал Проект Стратегии обращения с отработавшим ядерным топливом Белорусской АЭС (далее – Проект Стратегии), отражающий национальную политику в этой области. В соответствии с Законом Республики Беларусь "О государственной экологической экспертизе, стратегической экологической оценке и оценке воздействия на окружающую среду" [1] эксплуатирующей организацией проведена процедура по стратегической экологической оценке (далее – СЭО) Проекта Стратегии. Важным элементом процедуры по СЭО для обоснования экологически приемлемого варианта обращения с ОЯТ Белорусской АЭС стали разработка Экологического доклада по СЭО Проекта Стратеги и его обсуждение с общественностью.

Принимая во внимание современную мировую практику обращения с ОЯТ атомных электростан-

ций, вариантами Проекта Стратегии предусматриваются следующие основные фазы [2, 3]:

- промежуточное хранение ОЯТ после выгрузки его из приреакторных бассейнов выдержки до отправки на переработку;
- переработка ОЯТ на предприятиях Российской Федерации;
- возврат и хранение продуктов переработки ОЯТ с учетом принципа радиационного эквивалента;
- захоронение продуктов переработки ОЯТ на территории Республики Беларусь.

По предварительным данным на Белорусской АЭС будет реализован четырехгодичный топливный цикл с одной перегрузкой в 12 мес, средняя расчетная глубина выгорания тепловыделяющих сборок (далее — ТВС) в установившемся режиме перегрузок ядерного топлива равна 55.6 МВт · сут · т $^{-1}$ U. Общее количество ТВС с различной степенью обогащения, включая топливо нового типа обогащением 4.95% по 235 U, выгружаемых за 60 лет эксплуатации двух энергоблоков Белорусской АЭС, составит ориентировочно $N_{tot} = 5300$ единиц, общая масса достигнет $M_{tot} = 2500$ т [3].

Целью настоящей работы являются прогнозные исследования запасов активности и характеристик радиотоксичности ОЯТ в объектах хранения и захоронения при долговременном обращении с ОЯТ Белорусской АЭС.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ ФОРМИРОВАНИЯ ЗАПАСОВ РАДИОАКТИВНОСТИ В ХРАНИЛИЩЕ ОЯТ АЭС

Для оценки запасов активности продуктов деления, в условиях имеющейся на текущий момент неопределенности данных по режиму облучения, техническим характеристикам отработавших тепловыделяющих сборок (далее — ОТВС), продолжительности фаз обращения с ОЯТ разработана вероятностная модель формирования запасов и прогнозирования темпов снижения радиоактивности ОЯТ в объектах ядерного топливного цикла Белорусской АЭС. Для разработки модели использована методология анализа дискретных вероятностных процессов [4]. Первичным событием моделируемого процесса является перемещение ОТВС из активной зоны в бассейн выдержки энергоблоков № 1 или 2, выгорание которой достигло требуемой глубины выгорания топлива. Принимая во внимание прогнозируемое количество ОТВС, отличающихся начальным обогащением k и глубиной выгорания \boldsymbol{B}_n^k , недостаток на текущий момент информации по срокам выгрузки каждой ОТВС, дает нам основание рассматривать процедуру перемещения *n*-й ОТВС случайным процессом на интервале времени жизни АЭС $[t_A, t_B]$. Тогда параметр, характеризующий длительность выдержки $\theta = t - t_n$ *n*-й ОТВС и, соответственно, активность r — радионуклида $A_n^r(t_p-t_n)$ в момент времени, характерный для каждой фазы обращения $t=t_p$, также является случайной вели-

Суммарная активность основных долгоживущих радиационно-опасных продуктов деления и актиноидов для всей массы M_{tot} ОЯТ в момент $t=t_p$ определяется по следующей формуле:

$$A(t_{p}) = \sum_{n=1}^{N} \sum_{r=1}^{R} A_{n}^{r} (t_{p} - t_{n}) =$$

$$= \sum_{n=1}^{N} \sum_{r=1}^{R} \left[A_{n}^{r} (t_{p} - t_{n}) \cdot \exp\left(-\frac{\ln 2}{T_{1/2}^{r}} (t_{p} - t_{s})\right) \right],$$
(1)

где $T_{1/2}^r$ — период полураспада r-го нуклида.

Задача оценки суммарной активности на каждой фазе обращения с ОЯТ сводится к простой, но трудоемкой процедуре суммирования, в которой параметр t_n является случайной величиной, заданной на интервале $[t_A, t_B]$ его возможных значений. С

помощью процедур Монте-Карло, реализованных в разработанном для этих целей программном средстве имитационного моделирования СUВ [5], реальная последовательность моментов выгрузки ОТВС моделируется равномерной выборкой случайных значений на интервале $[t_A, t_B]$. С помощью уравнения (1) строится выборка случайных значений активности $A(\theta_n)$. Размер выборки принимает значение N, равное суммарному числу ОТВС, наработанных на энергоблоках № 1 и 2 Белорусской АЭС за прогнозный срок эксплуатации.

ОЦЕНКА ЗАПАСОВ АКТИВНОСТИ НА РАЗНЫХ ФАЗАХ ОБРАЩЕНИЯ С ОЯТ БЕЛОРУССКОЙ АЭС

В качестве исходных данных использованы методические материалы документа РБ-093-14 "Радиационные и теплофизические характеристики отработавшего ядерного топлива водо-водяных энергетических реакторов и реакторов большой мошности канальных" по удельным активностям продуктов деления и актинидов в ОТВС с начальным обогащением 4.81% по ²³⁵U в зависимости от глубины выгорания в реакторе ВВЭР-1000 [6]. Для проведения расчетных исследований авторами подготовлены базы данных в среде Microsoft Excel по активностям продуктов деления и актинидов (в расчете на 1 ОТВС) для топлива с начальным обогащением 4.81% и средней глубиной выгорания топлива Белорусской АЭС (табл. 1). Оцененная неопределенность результатов расчета концентраций (удельных активностей) актинидов и продуктов деления при использовании аппроксимирующей зависимости лежит в диапазоне 1— 64% [6], что коррелирует с неопределенностью оценки глубины выгорания топлива в ТВС расчетным либо экспериментальным методами. Выполненный авторами с помощью программного средства Serpent [7] численный расчет удельных активностей продуктов деления и актинидов для топлива с начальным обогащением 4.95% и выгоранием 55.6 MBт \cdot сут \cdot кг $^{-1}$ U показал, что отличие от данных, представленных в табл. 1, составляет 7–15% [8], что для целей данной работы является вполне приемлемым.

Моделирование запасов активности на каждой фазе обращения с ОЯТ по каждому из радиационно-опасных радионуклидов, а также суммарной активности, проведено с использованием программного средства имитационного моделирования СИВ [5]. Результаты оценки суммарной активности продуктов деления и актинидов отработавшего топлива энергоблоков № 1 и 2 (5300 ед. ОТВС) в зависимости от времени выдержки приведены в табл. 2. Расчет показал, что после динамичного снижения в течение первых сотен лет удельная активность меняется медлен-

55.0 MDI CYI I O B I DC C 0001amenucm 4.81/0					
Радионуклид	Активность на 1 ТВС, Бк · ТВС ⁻¹	$T_{1/2}$, c	Радионуклид	Активность на 1 ТВС, Бк · ТВС ⁻¹	$T_{1/2}$, c
¹⁴⁴ Ce	$2.53 \cdot 10^{16}$	$2.46 \cdot 10^{07}$	⁹³ Zr	$3.19 \cdot 10^{10}$	$4.83 \cdot 10^{13}$
¹³⁴ Cs	$4.73 \cdot 10^{15}$	$6.51 \cdot 10^{07}$	^{125m} Te	$4.11 \cdot 10^{13}$	$5.01\cdot10^{06}$
¹³⁵ Cs	$1.17 \cdot 10^{10}$	$7.26 \cdot 10^{13}$	²³⁷ Np	$1.63 \cdot 10^{10}$	$6.75 \cdot 10^{13}$
¹³⁷ Cs	$2.83 \cdot 10^{15}$	$9.47 \cdot 10^{08}$	²³⁸ Pu	$1.79 \cdot 10^{14}$	$2.77 \cdot 10^{09}$
¹⁵⁴ Eu	2.16 · 10 ¹⁴	$2.71 \cdot 10^{08}$	²³⁹ Pu	$1.04 \cdot 10^{13}$	$7.61 \cdot 10^{11}$
¹⁵⁵ Eu	$8.97 \cdot 10^{13}$	$1.48 \cdot 10^{08}$	²⁴⁰ Pu	$1.87 \cdot 10^{13}$	$2.07 \cdot 10^{11}$
^{3}H	$3.37 \cdot 10^{11}$	$3.89 \cdot 10^{08}$	²⁴¹ Pu	5.22 · 10 ¹⁵	$4.53 \cdot 10^{08}$
⁸⁵ Kr	$1.57 \cdot 10^{14}$	$3.38 \cdot 10^{08}$	²⁴² Pu	1.10 · 10 ¹¹	$1.18 \cdot 10^{13}$
¹⁰⁷ Pd	$2.41 \cdot 10^{09}$	$2.05 \cdot 10^{14}$	^{234}U	$3.31 \cdot 10^{10}$	$7.75 \cdot 10^{12}$
106 Ru	$1.01 \cdot 10^{16}$	$3.21 \cdot 10^{07}$	^{235}U	$4.64 \cdot 10^{08}$	$2.22\cdot 10^{16}$
¹²⁵ Sb	$1.86 \cdot 10^{14}$	$8.61 \cdot 10^{07}$	^{236}U	$1.19 \cdot 10^{10}$	$7.39 \cdot 10^{14}$
⁷⁹ Se	$9.87 \cdot 10^{09}$	$1.04 \cdot 10^{12}$	^{238}U	$8.48 \cdot 10^{09}$	$1.41 \cdot 10^{17}$
¹⁵¹ Sm	$9.77 \cdot 10^{12}$	$2.84 \cdot 10^{09}$	²⁴¹ Am	$7.00 \cdot 10^{12}$	$1.37 \cdot 10^{10}$
^{121m} Sn	$3.03 \cdot 10^{11}$	$1.74 \cdot 10^{09}$	²⁴³ Am	$1.60 \cdot 10^{12}$	$2.33\cdot 10^{11}$
¹²⁶ Sn	$1.30 \cdot 10^{10}$	$3.15 \cdot 10^{12}$	²⁴² Cm	$2.29 \cdot 10^{15}$	$1.41 \cdot 10^{07}$
90 Sr	$1.31 \cdot 10^{15}$	$8.88 \cdot 10^{08}$	²⁴⁴ Cm	$2.81 \cdot 10^{14}$	$5.41 \cdot 10^{08}$

²⁴⁵Cm

 $6.66 \cdot 10^{12}$

Таблица 1. Результаты расчета активностей продуктов деления и актинидов для средней глубины выгорания $55.6 \text{ MBt} \cdot \text{сут} \cdot \text{т}^{-1} \text{ U}$ в TBC с обогащением 4.81%

но и через 1000 лет достигает уровня порядка $1.77 \cdot 10^{17}$ Бк. Оцененная суммарная активность ОЯТ после выдержки 10 000 лет составит величину $3.88 \cdot 10^{16}$ Бк.

 $2.56 \cdot 10^{11}$

⁹⁹Tc

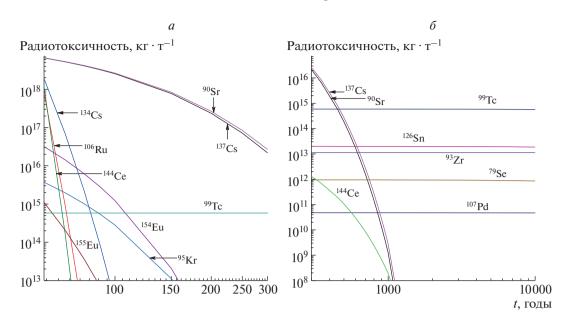
РЕЗУЛЬТАТЫ РАСЧЕТОВ ХАРАКТЕРИСТИК РАДИОТОКСИЧНОСТИ ОЯТ ВВЭР-1200

Для оценки потенциальной опасности ОЯТ Белорусской АЭС на различных фазах обращения наряду с радиационными характеристиками, важно располагать сведениями по характеристикам радиотоксичности радионуклидов на различных временных фазах обращения [9, 10]. В Республике Беларусь для целей нормирования поступления радионуклидов в организм человека пероральным путем нормативно установлены уровни вмешательства по воде [11]. По определению радиотоксичность радионуклида по воде определяет объем воды, который необходим для разбавления активности *i*-го радионуклида, содержащегося в 1 т уранового топлива, для снижения до приемлемого уровня.

После выдержки в приреактором бассейне облученное топливо перемещается на хранение в промежуточное хранилище ОЯТ на срок не менее 50 лет, после которого, вследствие радиоактивного распада продуктов деления, радиационные ха-

рактеристики ОЯТ снижаются до уровней, допускающих дальнейшее обращение на установках по переработке.

 $1.00 \cdot 10^{13}$


 $2.68 \cdot 10^{11}$

На рис. 1, 2 представлены темпы снижения радиотоксичности продуктов деления и актинидов на этапах хранения от 10 до 10000 лет при долговременном хранении ОЯТ. Расчеты выполнены на основании данных, представленных в табл. 1.

На этапе промежуточного хранения топлива со средним выгоранием 55.6 MBт \cdot сут \cdot т $^{-1}$ U радиотоксичность по воде определяется вкладом

Таблица 2. Результаты расчетов темпов снижения суммарной активности ОЯТ в зависимости от времени выдержки

Время выдержки, годы	Суммарная активность радионуклидов, Бк		
100	$4.87 \cdot 10^{18}$		
200	$9.75 \cdot 10^{17}$		
500	$3.50 \cdot 10^{17}$		
1000	$1.77 \cdot 10^{17}$		
5000	$5.44 \cdot 10^{16}$		
10000	$3.88 \cdot 10^{16}$		

Рис. 1. Радиотоксичность $\Pi Д$ по воде с момента выгрузки: a – до 300 лет; δ –с 300 лет до 10 тысяч лет.

продуктов деления 106 Ru, 144 Ce, 90 Sr, 137 Cs, 134 Cs, 147 Pm, 154 Eu. Радиотоксичность по воде продуктов деления за 100 лет снижается от 10^{18} до 10^{15} кг · т $^{-1}$. Преобладающий вклад в суммарную радиотоксичность ОЯТ на временном этапе до 100 лет вносят изотопы актинидов 238 Pu, 239 Pu, 240 Pu, 241 Pu, 242 Cm и 244 Cm. Наблюдается рост удельной активности и, соответственно, радиотоксичности 241 Am, что связано с его накоплением за счет распада ма-

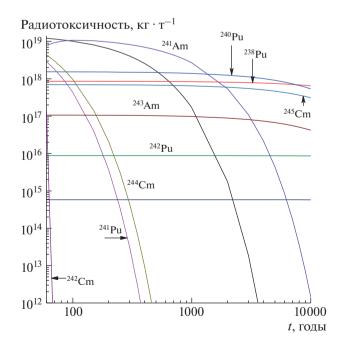


Рис. 2. Радиотоксичность актинидов по воде.

теринского нуклида 241 Pu. Радиотоксичность актинидов по воде снижается от 10^{19} до 10^{17} кг · т $^{-1}$, что на два порядка превышает вклад в суммарную радиотоксичность продуктов деления. Оценка вкладов в суммарную радиотоксичность по воде ОЯТ показала, что на этапе хранения до 100 лет основной вклад дают радионуклиды 90 Sr, 106 Ru, 137 Cs, 134 Cs, 144 Ce, 147 Pm, 154 Eu, 238 Pu, 240 Pu, 241 Pu, 244 Cm, а также 241 Am.

На этапе долговременного хранения ОЯТ от 1000 до 10 тыс. лет потенциальная опасность определяется основными долгоживущими продуктами деления и актинидами, из которых основной вклад в радиотоксичность топлива вносит 97 Тс, и в меньшей степени 93 Zr, 79 Se, 239 Pu, 240 Pu, 242 Pu и 243 Am. Радиотоксичность по воде продуктов деления снижается до 10^{13} кг · т $^{-1}$. Радиотоксичность актинидов по воде снижается до 10^{15} кг · т $^{-1}$. В целом, вклад актинидов на два порядка превышает вклад в суммарную радиотоксичность продуктов деления.

ЗАКЛЮЧЕНИЕ

Разработанная вероятностная модель, реализованная в виде программного средства СИВ, обеспечивает прогнозирование запасов активности ОЯТ по перечню наиболее опасных продуктов деления и актиноидов на разных фазах обращения с ОЯТ АЭС с ВВЭР-1200.

Результаты моделирования показали, что вследствие радиоактивного распада продуктов деления на этапе хранения в промежуточном хранилище ОЯТ (в течение 100 лет) суммарная

активность ОЯТ Белорусской АЭС снижается до уровня $4.87 \cdot 10^{18}$ Бк. На этапе длительного хранения суммарная активность не превышает 10^{16} Бк.

На основании проведенных расчетных исследований характеристик радиотоксичности ОЯТ ВВЭР-1200 определены перечни радиационно-опасных радионуклидов, определяющих потенциальную опасность на различных фазах обращения с ОЯТ Белорусской АЭС.

Результаты исследований могут быть использованы в поддержку обоснования экологически приемлемого варианта обращения с ОЯТ Белорусской АЭС. Надежность оценок может быть повышена при получении детальных сведений по характеристикам ядерного топливного цикла Белорусской АЭС.

СПИСОК ЛИТЕРАТУРЫ

- https://kodeksy-by.com/zakon_rb_o_gosudarstvennoj ekologicheskoj ekspertize.htm.
- 2. Status and trends in spent fuel and radioactive waste management. IAEA nuclear energy series № NW-T-1.14. Vienna, 2018.

- 3. Экологический доклад по стратегической экологической оценке проекта Стратегии обращения с отработавшим ядерным топливом Белорусской атомной электростанции. Минск, 2018.
- 4. *Вентцель Е.С.* Исследование операций. М.: Наука, 1972. С. 552.
- Горбачева Н.В. // Докл. 6-й Межд. науч.-техн. конф. "Обеспечение безопасности АЭС с ВВЭР" (Москва, 2009). С. 020.
- Радиационные и теплофизические характеристики отработавшего ядерного топлива водо-водяных энергетических реакторов и реакторов большой мощности канальных РБ-093-14 // ЯРБ. 2014. № 4(74). С. 49.
- 7. Leppaenen J. Serpent, continuous-energy Monte Carlo reactor physics burnup calculation code. VTT technical research center of Finland, 2013.
- 8. *Petrovskii A.M., Rudak E.A., Korbut T.N., Kravchen-ko M.O.* // J. Phys. Conf. Ser. 2018. V. 1133. Art № 012009.
- 9. A basic toxicity classification of radionuclides. Technical reports series № 15. Vienna: IAEA, 1963. P. 39.
- Korchova J.A., Harbachova N.V., Kuzmina N.D. // J. Phys. Conf. Ser. 2018. V. 1133. Art № 012025.
- Критерии оценки радиационного воздействия: гигиенический норматив. Нац. реестр правовых актов РБ. 8/26850, 2013.