УДК 539.141:539.142:539.143

ИССЛЕДОВАНИЕ СВОЙСТВ ЯДЕР С ЭКСТРЕМАЛЬНЫМ ИЗБЫТКОМ НЕЙТРОНОВ В ОКРЕСТНОСТИ НЕЙТРОННОГО МАГИЧЕСКОГО ЧИСЛА *N* = 184

© 2020 г. В. Н. Тарасов^{1,} *, В. И. Куприков¹, Д. В. Тарасов¹

¹Национальный научный центр "Харьковский физико-технический институт", Харьков, Украина

**E-mail: vtarasov@kipt.kharkov.ua* Поступила в редакцию 11.05.2020 г. После доработки 02.06.2020 г. Принята к публикации 26.06.2020 г.

В приближении самосогласованного релятивистского и нерелятивистского среднего поля ядер изучены свойства основного состояния четно-четных ядер в широкой области массовых чисел. Особое внимание уделено ядрам за пределами теоретически известной границы нейтронной стабильности, которые образуют в (N, Z) пространстве при N = 184 полуостров ядер стабильных по отношению к испусканию одного или двух нейтронов.

DOI: 10.31857/S0367676520100257

В настоящее время в разных лабораториях мира проводятся эксперименты с использованием радиоактивных пучков для изучения свойств экзотических ядер, которые значительно удалены от долины стабильности [1]. Наиболее фундаментальными теоретическими подходами для изучения свойств таких ядер и определения положения границы нейтронной стабильности (ГНС) являются подходы, основанные на использовании метода Хартри–Фока (ХФ) или метода Хартри–Фока–Боголюбова (ХФБ) [2, 3] с эффективными силами, либо на использовании релятивистской теории Хартри–Боголюбова (РХБ) [4–7].

В наших работах [8–14] было показано, что за пределами теоретически известной ГНС при добавлении к изотопу некоторого числа нейтронов стабильность изотопов может восстанавливаться, что приводит к образованию полуострова стабильности на (N, Z) диаграмме. В этих работах на основе метода ХФ с эффективными силами Скирма с учетом аксиальной деформации и спаривания в приближении БКШ мы исследовали возможность существования островов или полуостровов стабильности (ПОС) ядер с очень большим избытком нейтронов за пределами ГНС ядер. Наши расчеты показали проявление качественного эффекта для ядер с экстремально большим избытком нейтронов в окрестности нейтронных магических чисел и "новых" магических чисел N = 32, 58, 82, 126,184, 258, который заключается в том, что за пределами ГНС предсказывается существование ПОС. Положение этих ПОС наблюдается при одних и тех же N в пространстве (N, Z) и не зависит от выбора рассмотренных нами сил Скирма. От выбора параметризации сил Скирма зависит протяженность ПОС и координаты N и Z окончания ПОС в пространстве (N, Z). Восстановление нейтронной стабильности ядер за пределами ГНС в окрестности нейтронных магических чисел и образование ПОС связано с полным заполнением нейтронных подоболочек с большой величиной орбитального момента [8-14]. Если полученные результаты, заключающиеся в существовании ПОС за пределами ГНС являются общим свойством ядер в рассматриваемой области N и Z, тогда можно ожидать аналогичного проявления оболочек с большим значением орбитального момента и в других подходах, основанных на представлении о среднем поле, таких как ХФБ и РХБ.

Целью данной работы является подтверждение возможности существования ПОС для ядер за пределами ГНС в окрестности магического числа N = 184 на основе релятивистских подходов с современными моделями лагранжианов NL3* [7], DD-PC1 и DD-ME2 [15, 16].

1. В данной работе на основе метода РХБ с использованием современных моделей лагранжианов DD-PC1 и DD-ME2 были изучены свойства основного состояния четно-четных изотопов в широкой области массовых чисел, включая ядра с нейтронным избытком за пределами ГНС в окрестности магического числа N = 184. Для расчетов мы использовали компьютерный код DIRHBZ из пакета программ DIRHB [17]. Код DIRHBZ позволяет решать систему стационарных уравнений Дирака—Хартри—Боголюбова ме-

Рис. 1. *NZ*-диаграмма атомных ядер для РХБ расчетов с взаимодействием DD-PC1. Светлые квадратики — стабильные ядра по отношению к испусканию одного нейтрона в наших расчетах. Сплошная линия и черные квадраты — 1n ГНС, полученная в РХБ расчетах [5] с взаимодействием DD-PC1. Пунктирные прямые — магическое число N = 184. Область серого цвета — известные из эксперимента атомные ядра.

тодом итераций в предположении аксиальной симметрии формы ядра. Так же, как и в наших расчетах [8–14] методом ХФ с силами Скирма, при решении уравнений Дирака в коде DIRHBZ используется разложение однонуклонных волновых функций по базису собственных волновых функций аксиальнодеформированного гармонического осциллятора. В этом разложении учитывались все базисные функции, для которых главное осцилляторное квантовое число не превышает N_f = 18. При решении уравнений Клейна-Гордона для мезонных полей (в расчетах с взаимодействием DD-ME2) также использовался базис волновых функций аксиально-деформированного гармонического осциллятора с размерностью базиса N_b = 20.

Для определения наиболее связанного состояния ядра все расчеты свойств рассмотренных нами ядер были выполнены с наложенными условиями на параметр квадрупольной деформации β_2 в интервале $-0.4 \le \beta_2 \le 0.7$. Для более точного определения минимального значения полной энергии ядра *E* проводились уточняющие расчеты без наложенных условий в окрестности минимума зависимости *E*(β_2).

Спаривание нуклонов в используемом нами коде описывается сепарабельным парным взаимодействием конечного радиуса действия [17, 18]. Результаты расчетов, представленные в настоящей работе, получены с параметрами спаривательного взаимодействия $G_n = G_p = -728 \text{ МэВ} \cdot \text{фm}^3$ и a = 0.644 фм, где $G_{n,p}$ определяют силу спаривания, а параметр a определяет эффективную об-

ласть действия сил спаривания. Эти параметры используются в оригинальном коде DIRHBZ.

Распределения плотности нейтронов и протонов ядер, образующих ПОС, обладают сферической симметрией [8–14]. Поэтому для ПОС одновременно с расчетом в DIRHBZ мы проводили дополнительные проверочные расчеты непосредственно в координатном пространстве в предположении сферической симметрии, как в работе [19].

2. В наших РХБ расчетах положение 1n ГНС определялось из условия, что энергии отрыва одного нейтрона $S_n \ge 0$. В данных расчетах величины S_n , также как в работах [8–14], получены в предположении справедливости теоремы Купмана и поэтому могут рассматриваться как приближенная оценка величины энергии отрыва одного нейтрона. Сколь угодно близкое к нулю положительное значение S_n , свидетельствует о связанности ядра по отношению к испусканию нейтрона. На рис. 1 приведена NZ-диаграмма атомных ядер, на которой представлены наши расчеты РХБ в сравнении с данными [5] для расчетов с лагранжианом DD-PC1. Подобные диаграммы были получены нами ранее для разных типов параметризации сил Скирма [12, 13]. Область NZ-диаграммы, выделенная серым цветом, показывает известные из эксперимента атомные ядра. Пунктирной линией показано магическое число N = 184. Сплошные линии, соединяющие черные квадратики, показывают 1n ГНС, полученные на основе расчетов с РХБ [5] с лагранжианом DD-PC1. На рис. 1 светлые квадратики показывают стабильные ядра по отношению к испусканию одного нейтрона и ПОС, образованный такими ядрами, полученные в наших РХБ расчетах с силами DD-PC1. Восстановление стабильности для изотонов, образующих ПОС за пределами 1*n* ГНС, связано с полным заполнением нейтронных подоболочек с большим угловым моментом и с внедрением соответствующих нейтронных уровней в область дискретных связанных состояний [11-15]. В расчетах с DD-PC1 и N = 184 при полном заполнении нейтронной подоболочки lj_{15/2} окончание ПОС образует ядро ²⁴⁶Sm. В наших ХФ расчетах [11-15] с силами SkM* [20] и N = 184 при полном заполнении нейтронной подоболочки $1j_{15/2}$ окончание ПОС образует ядро ²⁴⁰Ва. Положение ПОС в пространстве (N, Z) устойчиво по отношению к выбору эффективных сил как для расчетов с силами Скирма, так и в РХБ расчетах с разными типами лагранжианов. Обсуждаемый ПОС образуется при одних и тех же значениях числа N = 184.

Положение окончания всех ПОС в пространстве (N, Z) определяется типом лагранжиана для РХБ расчетов и зависит от расположенной высоко по энергии части спектра нейтронных квазисвя-

Рис. 2. Энергии отрыва одного нейтрона S_n в зависимости от Z, полученные в наших расчетах для взаимодействий DD-PC1 (черные квадраты), NL3* (светлые треугольники) и DD-ME2 (черные точки) для цепочки изотонов с N = 184.

занных состояний с большим угловым моментом, который генерируются данным типом лагранжиана в расчетах РХБ. Внедрение некоторых квазисвязанных состояний с большим угловым моментом в область дискретных связанных состояний при фиксированном значении N будет происходить при разных значениях Z для разных типов лагранжианов для РХБ расчетов. Для РХБ расчетов этот эффект виден на рис. 2, на котором показаны энергии отрыва одного нейтрона S_n для цепочки изотонов с N = 184 в зависимости от Z. полученные в расчетах с лагранжианами NL3* [7], DD-PC1 и DD-ME2. На этом рисунке стрелками отмечены ядра в окрестности окончания ПОС. Отметим также, что для всех ядер, принадлежащих ПОС, спектр одночастичных уровней таков, что для используемых нами сил спаривания спаривание нейтронов отсутствует.

Энергии отрыва одного нейтрона, оцененные с помощью теоремы Купмана, для окончаний ПОС представляют собой малые величины. Поэтому для таких слабосвязанных состояний желательно проводить дополнительные проверочные расчеты. Для ПОС при N = 184 РХБ решения, как мы увидим далее, обладают сферической формой распределения плотности нейтронов и протонов. Это предоставляет нам возможность в релятивистских расчетах использовать сферическое приближение [19], что позволяет проводить дополнительные проверочные вычисления одночастичных энергетических спектров сферических ядер на основе другого вычислительного алгоритма. Расчеты с взаимодействием DD-ME2 в координатном представлении на основе метода [19] пока-

Рис. 3. Энергии отрыва одного нейтрона S_n для изотопов Gd в зависимости от массового числа *A*, рассчитанные нами методом РХБ с взаимодействием DD-PC1 (темные квадраты) и методом ХФ для сил SkM* (светлые кружочки). Экспериментальные данные (светлые звездочки) [21].

зали, что для изотопа ²⁵²Ег последним заполненным одночастичным уровнем является уровень $lj_{15/2}$ с энергией $E_n = -0.253$ МэВ. Для сферического изотопа ²⁵²Ег расчеты с кодом DIRHBZ дают близкое значение энергии $E_n = -0.301$ МэВ для одночастичного уровня $lj_{15/2}$. Это указывает на хорошую точность расчетов характеристик ядер, принадлежащих ПОС.

Остановимся более подробно на результатах, полученных для цепочки изотопов Gd, включая изотоп ²⁴⁸Gd, который принадлежит ПОС. На рис. 3 представлены результаты расчетов энергий отрыва одного нейтрона S_n изотопов Gd для РХБ расчета с DD-PC1 в сравнении с расчетом XФ [11] с силами SkM* и имеющимися экспериментальными данными [21]. Из рис. 3 видно, что для сил SkM* 1n-ГНС соответствует изотопу ²³⁰Gd, что находится за пределами 2n-ГНС (²²²Gd) [11], а изотопы ^{246, 248}Gd принадлежат ПОС. Расчеты РХБ с DD-PC1 также показывают, что за пределами 1*n*-ГНС существует стабильный по отношению к испусканию одного нейтрона изотоп ²⁴⁸Gd. Согласие вычисленных в РХБ и ХФ расчетах величин S_n с экспериментальными данными [21] практически одинаковое. Приведенные на рис. 3 S_n представляют собой приближенные оценочные величины, полученные в предположении справедливости теоремы Купмана. Из рис. 3 видно, что зависимость S_n от A испытывает характерные изломы, связанные с проявлением магических чисел нейтронов N = 82, 126, 184. Отметим, что в наших расчетах для ядер с этими магически-

Рис. 4. Зависимость параметров квадрупольной деформации β_2 массового распределения плотности изотопов Gd от массового числа *A* для взаимодействия DD-PC1, рассчитанные методом РХБ (черные квадраты), в сравнении с расчетом XФ с силами Скирма SkM* (кружочки). Наполовину черные квадраты и кружочки – 1*n* нестабильные изотопы.

ми числами нейтронов энергия спаривания нейтронов равна нулю.

Как отмечалось выше, в РХБ расчетах для всех рассмотренных нами изотопов проводились вычисления с наложенными условиями зависимости полной энергии ядра от величины параметра квадрупольной деформации β_2 . Наши расчеты полных энергий изотонов с экстремальным нейтронным избытком с N = 184 в зависимости от величины параметра квадрупольной деформации β_2 показали, что минимум кривой $E(\beta_2)$ для этих ядер соответствует равновесной сферической форме ядер. С учетом отсутствия спаривания для нейтронов в этих ядрах это соответствует представлениям о сферичности ядер с магическим числом нейтронов N = 184.

На рис. 4 представлена зависимость параметра квадрупольной деформации β₂ массового распределения плотности изотопов Gd от A для расчетов с лагранжианом DD-PC1 в сравнении с результатами, полученными методом ХФ [11] с силами SkM*. Черные квадратики обозначают β₂, полученные в РХБ, а светлые кружочки – результаты ХФ расчетов [11] с силами SkM*. Наполовину черные квадратики и наполовину черные кружочки показывают 1*n* нестабильные изотопы соответственно в расчетах РХБ и ХФ. Стрелка показывает стабильный изотоп ²⁴⁸Gd за пределами ГНС в расчетах РХБ и ХФ. Для рассматриваемого диапазона массовых чисел А вычисленные β₂ в РХБ изменяют как величину, так и знак, и в основном согласуются с данными расчетов ХФ для

сил SkM* [11] для стабильных изотопов по отношению к испусканию одного нейтрона. Существенное различие в величине β_2 имеет место только для изотопов нестабильных по отношению к испусканию одного нейтрона. Это различие не представляет интерес, так как такие решения не соответствуют связанным системам. На рис. 4 пунктиром показаны изотопы с магическим числом нейтронов N = 82, 126, 184. Полученные в расчетах РХБ и ХФ параметры квадрупольной деформации β₂ этих изотопов равны нулю, что соответствует представлению о сферической форме для магических ядер. Отметим еще раз сферическую форму изотопа ²⁴⁸Gd, который стабилен по отношению к испусканию одного нейтрона в РХБ и ХФ расчетах, а также стабилен к испусканию двух нейтронов в XФ расчетах [11] с силами SkM* и принадлежит окончанию ПОС при N = 184.

На основе метода РХБ с различными лагранжианами и метода ХФ с силами Скирма с учетом деформации показано, что за пределами ранее теоретически известной ГНС может существовать полуостров ядер, стабильных по отношению к испусканию одного или двух нейтронов. Полуостров стабильности образован цепочками изотонов с N = 184. Для всех изотонов с N = 184, принадлежащих полуострову стабильности, отсутствует спаривание нейтронов, и они имеют сферическую форму. Это соответствует представлению о магичности числа N = 184.

Восстановление нейтронной стабильности изотопов с экстремальным нейтронным избытком далеко за пределами ГНС связано с полным заполнением нейтронных подоболочек с большой величиной углового момента. Такие состояния обладают высоким центробежным барьером и при неполном их заполнении квазисвязаны. При увеличении числа нейтронов в изотопах за пределами ГНС некоторые состояния с большой величиной углового момента погружаются в область дискретных связанных состояний, что приводит к восстановлению стабильности ядра по отношению к испусканию нейтронов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Пенионжкевич Ю.Э., Калпакчиева Р.Г. Легкие ядра у границы нейтронной стабильности. Дубна: ОИЯИ, 2016.
- 2. Bender M., Heenen P.-H., Reinhard P.-G. // Rev. Mod. Phys. 2003. V. 75. P. 121.
- 3. Stoitsov M.V., Dobaczewski J., Nazarewicz W. et al. // Phys. Rev. C. 2003. V. 68. Art. № 054312.
- Meng J., Toki H., Zhou S.G. et al. // Prog. Part. Nucl. Phys. 2006. V. 57. P. 470.
- Agbemava S.E., Afanasjev A.V., Ray D., Ring P. // Phys. Rev. C. 2014. V. 89. Art. № 054320.
- Afanasjev A.V., Agbemava S.E., Ray D., Ring P. // Phys. Rev. C. 2015. V. 91. Art. № 014324.

- Lalazissis G.A., Karatzikos S., Fossion R. et al. // Phys. Lett. B. 2009. V. 671. P. 36.
- Gridnev K.A., Gridnev D.K., Kartavenko V.G. et al. // Eur. Phys. J. A. 2005. V. 25. Suppl. 1. P. 353.
- Гриднев К.А., Гриднев Д.К., Картавенко В.Г. и др. // ЯФ. 2006. Т. 69. С. 3; Gridnev К.А., Gridnev D.K., Kartavenko V.G. et al. // Phys. Atom. Nucl. 2006. V. 69. Р. 1.
- 10. Gridnev K.A., Gridnev D.K., Kartavenko V.G. et al. // Int. J. Mod. Phys. E. 2006. V. 15. P. 673.
- Тарасов В.Н., Гриднев К.А., Грайнер В. и др. // ЯФ. 2012. Т. 75. С. 19; *Tarasov V.N., Gridnev К.А., Greiner W. et al.* // Phys. Atom. Nucl. 2012. V. 75. P. 17.
- Тарасов В.Н., Гриднев К.А., Грайнер В. и др. // Изв. РАН. Сер. физ. 2012. Т. 76. С. 976; *Tarasov V.N., Gridnev K.A., Greiner W. et al.* // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 876.
- 13. *Tarasov V.N., Gridnev K.A., Gridnev D.K. et al.* // Int. J. Mod. Phys. E. 2013. V. 22. Art. № 1350009.
- 14. Тарасов В.Н., Гриднев К.А., Грайнер В. и др. // Изв. РАН. Сер. физ. 2013. Т. 77. С. 927; Tarasov V.N., Grid-

nev K.A., Greiner W. et al. // Bull. Russ. Acad. Sci. Phys. 2013. V. 77. P. 842.

- Nikšić T., Vretenar D., Ring P. // Phys. Rev. C. 2008. V. 78. Art. № 034318.
- Lalazissis G. A., Nikšić T., Vretenar D., Ring P. // Phys. Rev. C. 2005. V. 71. Art. № 024312.
- Nikšić T., Paar N., Vretenar D., Ring P. // Comp. Phys. Com. 2014. V. 185. P. 1808.
- Куприков В.И., Тарасов В.Н. // ЯФ. 2019. Т. 82. С. 186; *Киргікоv V.I., Tarasov V.N.* // Phys. Atom. Nucl. 2019. V. 82. P. 191.
- Куприков В.И., Пилипенко В.В. // ЯФ. 2014. Т. 77. С. 1443; Kuprikov V.I., Pilipenko V.V. // Phys. Atom. Nucl. 2014. V. 77. P. 1378.
- Bartel J., Quentin P., Brack M. et al. // Nucl. Phys. A. 1982. V. 386. P. 79.
- 21. Audi G., Wapstra A.H., Thibault C. et al. // Nucl. Phys. A. 2003. V. 729. P. 337.