УДК 539.17

КЛАСТЕРНАЯ СТРУКТУРА УРОВНЕЙ ЯДРА ¹⁰В

© 2020 г. М. А. Жусупов¹, К. А. Жаксыбекова¹, Р. С. Кабатаева^{1, 2, *}

¹Казахский национальный университет имени аль-Фараби, Научно-исследовательский институт экспериментальной и теоретической физики, Алматы, Казахстан

²Международный университет информационных технологий, Алматы, Казахстан

*E-mail: raushan.kabatayeva@gmail.com Поступила в редакцию 11.05.2020 г.

После доработки 02.06.2020 г. Принята к публикации 26.06.2020 г.

В рамках многочастичной модели оболочек выполнен расчет спектров возбуждения ядра ¹⁰В в литиевых реакциях передачи тритонных и α -частичных кластеров, полученных суммированием соответствующих спектроскопических *S*-факторов. Показано, что различие спектров возбуждения ядра ¹⁰В в литиевых реакциях передачи α -кластеров на ядре ⁶Li и в реакции радиационного захвата ⁶Li(α , γ)¹⁰В связано со структурными особенностями состояний ядра ¹⁰В в околопороговой области.

DOI: 10.31857/S0367676520100312

введение

В многочастичной модели оболочек волновые функции ядра¹⁰В, находящегося в середине 1*p*-оболочки. являются многокомпонентными [1]. Так. волновая функция основного состояния, имеющего полный спин, четность и изоспин $(J^{\pi}, T) =$ $= (3^+, 0)$, содержит 10 компонент. Они различаются значениями суммарного орбитального L и спинового S моментов и схемами Юнга, характеризуюшими пространственную симметрию орбитальной волновой функции. Для основного состояния ядра ¹⁰В доминирующей является симметрия [442], допускающая виртуальное кластерное разбиение { $\alpha\alpha d$ }. На эту схему Юнга приходится 91% от веса полной волновой функции. На вес компоненты [433], допускающей разбиение $\{\alpha t\tau\}$ ($\tau = {}^{3}$ He), приходится 3.2% от веса полной волновой функции, максимальный вклад состояний со схемой Юнга [433] приходится на энергии возбуждения около 25 МэВ [1].

В данной работе для исследования кластерной структуры основного и возбужденных состояний ядра ¹⁰В используются ядерные реакции с ионами ^{6,7}Li. Из-за аномально малой энергии связи ядра ⁶Li в α + *d*-канале, а ядра ⁷Li в α + *t*-канале в ядерных реакциях типа ⁶Li(⁶Li, *d*)¹⁰В и ⁷Be(⁷Li, α)¹⁰В доминирующими механизмами являются передача α -частичного и тритонного виртуальных кластеров соответственно [2]. Как и ранее [3], спектрам возбуждения остаточных ядер мы сопоставляем энергетические распределения спектроскопических *S*-факторов, вычисленных в многочастичной модели оболочек, то есть, используя выражение $\sigma \sim (2J + 1) \Sigma S_L$.

Особый интерес вызывает сравнение результатов расчета сечений в литиевых реакциях передачи виртуальных α -частиц с результатами расчетов радиационного захвата (α , γ) на ядре ⁶Li, особенно в узкой околопороговой области, в которой последние имеют ярко выраженный резонансный характер [4—6]. Различие в поведении сечений связано со структурными особенностями уровней ядра ¹⁰В в этой области энергий.

СПЕКТРЫ ВОЗБУЖДЕНИЯ ЯДРА ¹⁰В В ЛИТИЕВЫХ РЕАКЦИЯХ

В табл. 1 даны рассчитанные значения суммарных спектроскопических факторов, нормированные на основное состояние. Сравнение с экспериментальными данными [7] показывает, что теория в целом передает основные максимумы, наблюдаемые при энергиях E = 7, 11 и 13 МэВ для присоединения тритонов и при энергиях E = 7, 11 и 16 МэВ для α -частиц. На рис. 1*а* и 1*б* представлены спектры возбуждения ядра ¹⁰В в реакциях ⁷Ве(⁷Li, α)¹⁰В (передача α -кластера) соответственно.

В качестве волновых функций основного состояния ядер ^{6,7}Li, а также основного и возбужденных состояний ядра ¹⁰В нами использовались хорошо известные волновые функции многочастичной модели оболочек, рассчитанные в НИИЯФ МГУ [1].

Волновые функции многочастичной модели оболочек проверены на успешных расчетах различных структурных характеристик легких ядер. Они также применялись в расчетах различных ядерных реакций, успешно описывая различные

КЛАСТЕРНАЯ СТРУКТУРА УРОВНЕЙ ЯДРА ¹⁰В

Уровни ¹⁰ В		S_t^L		$(2J+1)\Sigma S_L^t$	S^L_{lpha}			$(2J+1) \Sigma S_L^{\alpha}$
Е, МэВ	<i>J</i> , T	L = 1	L = 3	$^{7}\text{Be} + t \rightarrow ^{10}\text{B*}$	L = 0	<i>L</i> = 2	<i>L</i> = 4	$^{6}\text{Li} + \alpha \rightarrow {}^{10}\text{B*}$
01	3, 0	$2.1 \cdot 10^{-2}$	$2.2 \cdot 10^{-1}$	1	_	$3.3 \cdot 10^{-3}$	$1.0 \cdot 10^{-2}$	1
	1, 0	$7.1 \cdot 10^{-2}$	$1.1 \cdot 10^{-1}$	0.320	$8.7 \cdot 10^{-2}$	$4.0 \cdot 10^{-1}$	_	15.69
12	0, 1	$1.3 \cdot 10^{-1}$	_	0.077		_	_	_
23	1, 0	$1.8 \cdot 10^{-1}$	$2.0 \cdot 10^{-2}$	0.355	$5.0 \cdot 10^{-1}$	$6.7 \cdot 10^{-2}$	_	18.27
34	2,0	$1.4 \cdot 10^{-1}$	$2.4 \cdot 10^{-1}$	1.126	_	$2.5 \cdot 10^{-1}$	_	13.42
45	_	_	_	_	_	_	_	_
56	2, 1	$2.1 \cdot 10^{-1}$	$1.6 \cdot 10^{-2}$	0.669	_	_	_	-
67	3, 0	$1.1 \cdot 10^{-1}$	$7.1 \cdot 10^{-2}$	1.830	_	$3.2 \cdot 10^{-1}$	$2.9 \cdot 10^{-2}$	45.16
	4, 0	_	$1.7 \cdot 10^{-1}$		_	_	$6.8 \cdot 10^{-2}$	
	2, 0	$4.2 \cdot 10^{-2}$	$1.8 \cdot 10^{-2}$		_	$2.3 \cdot 10^{-1}$	_	
78	2, 1	$5.1 \cdot 10^{-2}$	$1.2 \cdot 10^{-1}$	0.506	_	_	_	_
89		—	—	—	-	—	—	—
910	-	_	—	_	_	_	_	—
	2, 1	$7.1 \cdot 10^{-2}$	$5.3 \cdot 10^{-3}$	1.860	—	_	_	15.88
10 11	3, 0	$1.4 \cdot 10^{-1}$	$7.8 \cdot 10^{-3}$		—	$1.4 \cdot 10^{-1}$	$6.7 \cdot 10^{-2}$	
1011	1, 0	$2.0\cdot10^{-2}$	$9.1 \cdot 10^{-2}$		$3.5 \cdot 10^{-5}$	$1.0 \cdot 10^{-2}$	—	
	3, 1	$5.2 \cdot 10^{-6}$	$2.0\cdot10^{-1}$		—	—	—	
1112	1, 1	$4.2 \cdot 10^{-3}$	$2.1 \cdot 10^{-5}$	0.007	—	-	_	—
	4, 1	—	$1.1 \cdot 10^{-1}$	1.744	_	-	_	_
1213	1, 1	$2.8\cdot 10^{-1}$	$2.7 \cdot 10^{-5}$		_	_	_	
	2, 1	$2.2\cdot10^{-1}$	$2.6 \cdot 10^{-3}$		_	_	_	
1314	2, 0	$1.8 \cdot 10^{-2}$	$7.1 \cdot 10^{-2}$	0.328	_	$1.1 \cdot 10^{-2}$	_	0.50
	0, 1	$1.1 \cdot 10^{-1}$	_		_	_		0.39
1415	5,0	—	—	_	_	_	$2.3 \cdot 10^{-1}$	27.17
1516	2, 1	$5.3 \cdot 10^{-2}$	$2.6 \cdot 10^{-3}$	0.672	_	_	_	0.20
	3, 0	$2.4 \cdot 10^{-3}$	$1.2\cdot 10^{-1}$			$1.4 \cdot 10^{-4}$	$1.1 \cdot 10^{-1}$	8.28
1617	0, 1	$5.1 \cdot 10^{-2}$	_		_	_	_	
	3, 1	$1.0\cdot 10^{-5}$	$5.4 \cdot 10^{-3}$	0.639	_	_	_	15.46
	4,0	_	$1.1 \cdot 10^{-1}$		_	_	$1.6 \cdot 10^{-1}$	
1718	2, 1	$6.1 \cdot 10^{-2}$	$7.1 \cdot 10^{-3}$	0.201	_	_	_	_
1819	1, 0	$2.0 \cdot 10^{-1}$	$8.4 \cdot 10^{-5}$	0.957	$2.9 \cdot 10^{-3}$	$2.3 \cdot 10^{-2}$	_	
	3,0	$1.8 \cdot 10^{-2}$	$1.0 \cdot 10^{-2}$		_	$1.4 \cdot 10^{-2}$	$4.1 \cdot 10^{-4}$	1.91
	4, 1	_	$9.1 \cdot 10^{-2}$			_		
10 20	1, 0	$2.7 \cdot 10^{-2}$	$3.7 \cdot 10^{-3}$	0.635	$2.3 \cdot 10^{-2}$	$1.6 \cdot 10^{-2}$	_	1 25
1720	3, 1	$3.7 \cdot 10^{-5}$	$1.4 \cdot 10^{-1}$	0.055	_	—	—	1.25

Таблица 1. Спектры возбуждения ядра ¹⁰В в литиевых реакциях

механизмы. Основным достоинством этой модели является возможность, исходя из единой волновой функции основного состояния, переходить в различные нуклонные и кластерные каналы.

С целью изучения кластерной структуры ядра ¹⁰В были рассмотрены реакции взаимодействия изотопов лития друг с другом, приводящие к ос-

новным и возбужденным состояниям ядра 10 B. Здесь используется тот факт, что основным механизмом в реакции с ионами лития является передача слабо связанных дейтронов, тритонов и α -частиц. Оказалось, что энергетическая зависимость спектров возбуждения хорошо передается просуммированными спектроскопическими факторами.

Рис. 1. Спектр возбуждения ядра 10 В в литиевых реакциях передачи кластеров: *a* – передача *t*-кластера, *б* – передача α -кластера.

СРАВНЕНИЕ СЕЧЕНИЙ ВОЗБУЖДЕНИЯ ЯДРА ¹⁰В В РЕАКЦИЯХ ЗАХВАТА РЕАЛЬНЫХ И ВИРТУАЛЬНЫХ α-ЧАСТИЦ

Для расчета сечений вылета γ -квантов используется формула Брейта—Вигнера для одиночного резонанса, поскольку расстояние между соседними уровнями в этой области энергий больше полных ширин этих уровней. Полное сечение в резонансе ($E = E_0$) определится выражением [6]:

$$\sigma = \frac{4\pi}{k^2} \omega_{\gamma} \frac{1}{\Gamma},$$

где $\omega_{\gamma} = g \cdot \Gamma_{\gamma} \cdot \Gamma_{\alpha} \cdot \Gamma^{-1}$ – сила резонанса, g – фактор, учитывающий спины частиц.

Приведенная формула показывает, что сечение для вылета ү-кванта при возбуждении резонансного состояния будет тем больше, чем меньше полная ширина Г. Это условие будет выполняться в том

случае, если ширины для вылета α-частиц будут сравнимы с радиационными ширинами.

В табл. 2 [8] представлены полные резонансные сечения реакций радиационного захвата ${}^{6}Li(\alpha, \gamma){}^{10}B.$ В первом столбце приведены энергии α-частиц, при которых наблюдаются резонансы, в лабораторной системе и системе центра инерции. Во втором столбце указаны квантовые числа и энергии уровней. В третьем столбие приведены доминирующие мультиполи для электромагнитных переходов. В четвертом столбце указаны энергии вылетающих у-квантов, в пятом - силы резонансов, в шестом – полные ширины уровней, и в седьмом - приведены рассчитанные нами сечения реакции радиационного захвата. Как видно из табл. 2, в рассматриваемой энергетической области сила резонанса ω, более или менее плавно изменяется с энергией.

Nº	$E^{{}_{ m \Lambda.c}}_{lpha ({ m pes.})}, { m M}$ эВ ($E^{{ m c.H.M}}_{lpha ({ m pes.})}, { m M}$ эВ)	$\begin{split} J^{\pi}_i; T_i &\to J^{\pi}_f; T_f, \\ E_i &\to E_f \end{split}$	Мультипольности доминирующих переходов	<i>Е</i> _γ , МэВ	ω _γ , эΒ	Г, эВ	σ _{реакции} , мкб
1	1.085 (0.651)	$2^{-}; 0 \rightarrow 3^{+}; 0,$ 5.1103 \rightarrow g.s.	E1, M2	5.1103	$0.6 \cdot 10^{-1}$	$1.63 \cdot 10^{3}$	$3.6 \cdot 10^1$
2	1.173 (0.704)	$2^+; 1 \to 3^+; 0,$ 5.1639 \to g.s.	<i>M</i> 1, <i>E</i> 2	5.1639	$0.2 \cdot 10^{-1}$	2.868	$5.78 \cdot 10^3$
3	2.433 (1.459)	$2^+; 0 \to 3^+; 0,$ 5.9195 \to g.s.	<i>M</i> 1, <i>E</i> 2	5.9195	$1.9 \cdot 10^{-1}$	$1\cdot 10^4$	8.42
4	2.609 (1.565)	$4^+; 0 \to 3^+; 0, 6.0250 \to \text{ g.s.}$	<i>M</i> 1, <i>E</i> 2	6.0250	$3.4 \cdot 10^{-1}$	$8 \cdot 10^1$	$1.758 \cdot 10^{3}$
5	4.022 (2.413)	$1^{-}; 0+1 \rightarrow 3^{+}; 0,$ 6.873 \rightarrow g.s.	M2, E3	6.8730	$4.8 \cdot 10^{-1}$	$2 \cdot 10^{5}$	$6.45 \cdot 10^{-1}$

Таблица 2. Экспериментальные характеристики и сечения образования резонансных γ -квантов в реакции ${}^{6}\text{Li}(\alpha,\gamma){}^{10}\text{B}$

Рис. 2. Энергетическая зависимость полных сечений реакции 6 Li(α, γ) 10 B.

Для реакции ⁶Li(α , γ)¹⁰В наблюдаются четыре резонанса. Однако в этом случае полные ширины Г, как правило, гораздо больше, чем в радиационном захвате на ядре ⁷Li [6]. Исключение составляет γ -распад с уровня (2⁺, 1) при *E* = 5.1639 МэВ на основное состояние. В этом случае малость Г_{α} (и, следовательно, полной Г) связана с малостью спектроскопического фактора для α -распада этого уровня.

Из-за правил отбора по изоспину распад возможен только за счет примеси к волновой функции уровня $(2^+, 1)$ компоненты с T = 0, возникающей за счет кулоновского смешивания уровней с T=0 и T=1 [7]. Структурное подавление α -распада из состояния (4⁺, 0) [1] приводит к сравнительно малому значению полной ширины (4 строка в табл. 2) и, как следствие, к большому сечению вылета γ -квантов с энергией $E_{\gamma} = 6.025$ МэВ. Структурное подавление α-распада из состояния (4⁺, 0) в ядре ¹⁰В заключается в том, что основная компонента волновой функции ядра ¹⁰В со схемой Юнга [442], дающая 70% вклада в полную функцию [442]¹³F [1], не дает вклада в S_{α} -спектроскопический фактор для перехода к основному состоянию ядра ⁶Li, главная компонента которого имеет вид [42]¹³S [1]. Вклад в этот переход дает компонента [442]¹³G в волновой функции состояния (4⁺, 0) ядра ¹⁰В. Из-за большого значения орбитального момента α -частицы $L_{\alpha} = 4$, парциальная Γ_{α} ширина сильно подавляется за счет фактора проницаемости центробежного барьера. Переход из состояния с энергией E = 6.873 МэВ на основное состояние (5 строка в табл. 2) демонстрирует наглядно, как большое значение полной ширины Г, приводит к малым значениям сечения. В этом случае $\Gamma = \Gamma_{\gamma} + \Gamma_{\alpha} + \Gamma_{d} + \Gamma_{p} [9].$

На рис. 2 [8] представлены полные сечения реакции радиационного захвата в зависимости от энергии налетающих α -частиц. Сравнивая рис. 1 и 2, можно увидеть, что резонансы в реакциях радиационного захвата α -частиц изотопами лития ⁶Li с образованием основного и возбужденных состояний изотопов бора ¹⁰В и выходом монохроматических γ -квантов наблюдаются именно при тех энергиях, при которых соответствующий α -частичный *S*-фактор очень мал, поскольку спектроскопический *S*-фактор входит как множитель в формулу для парциальной ширины уровня [7].

ЗАКЛЮЧЕНИЕ

В реакции (α , γ) на ядре ⁶Li наблюдается резонансная структура сечений. В этом случае резонансы связаны с малыми α -ширинами возбуждаемых состояний ядра ¹⁰В, что обусловлено их структурными особенностями. Так, особенно большим здесь является сечение для вылета γ -квантов с энергией $E_{\gamma} = 5.1639$ МэВ. В этом случае в процессе возбуждается состояние с квантовыми числами (J^{π}, T) = (2⁺, 1) и малость α -ширины является следствием правил отбора по изоспину.

Большой выход резонансных монохроматических γ -квантов с E_{γ} = 5.1639 и 6.025 МэВ в процессе на ядре ⁶Li подтверждает возможность использования данной реакции для диагностики термоядерной плазмы путем добавления в нее определенного количества изотопов лития [4, 6].

Работа поддержана грантом МОН РК № АР05132952.

СПИСОК ЛИТЕРАТУРЫ

- 1. Бояркина А.Н. Структура ядер 1*р*-оболочки. М.: Изд-во МГУ, 1973. 62 с.
- 2. Оглоблин А.А. // ЭЧАЯ. 1972. Т. 3. № 4. С. 936.
- Жусупов М.А., Кабатаева Р.С. // Изв. РАН. Сер. физ. 2012. Т. 76. С. 485; Zhusupov M.A., Kabatayeva R.S. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. P. 429.
- 4. *Cecil F.E., Medley S.S., Nieschmidt E.B., Zweben S.J.* // Rev. Sci. Instrum. 1986. V. 57. № 8. P. 1777.
- Ворончев В.Т., Кукулин В.И. // ЯФ. 2000. Т. 63. С. 2147; Voronchev V.T., Kukulin V.I. // Phys. At. Nucl. 2000. V. 63. P. 2051.
- 6. *Жусупов М.А., Шестаков В.П.* // Вестник КазНУ. Сер. физ. 2002. № 1. С. 3.
- Буркова Н.А., Жаксыбекова К.А., Жусупов М.А. // ЭЧАЯ. 2009. Т. 40. № 2. С. 162; Burkova N.A., Zhaksybekova К.А., Zhusupov М.А. // Phys. Part. Nucl. 2009. V. 40. Р. 162.
- Жусупов М.А. Ибраева Е.Т., Буртебаев Н.Т. и др. // Изв. РАН. Сер. физ. 2010. Т. 74. С. 915; *Zhusupov М.А., Ibraeva E.T., Burtebaev N.T.* // Bull. Russ. Acad. Sci. Phys. 2010. V. 74. P. 891.
- 9. Ajzenberg-Selove F. // Nucl. Phys. A. 1988. V. 490. P. 1.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 10 2020