УДК 519.246.85:004.942

ИССЛЕДОВАНИЕ КОРРЕЛЯЦИЙ ИНТЕРИКТАЛЬНЫХ ЭЭГ СИГНАЛОВ ДЛЯ ДИАГНОСТИКИ ЭПИЛЕПСИИ

© 2020 г. С. А. Демин^{1, *}, О. Ю. Панищев¹, С. Ф. Тимашев², Р. Р. Латыпов¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет", Институт физики, Казань, Россия ²Федеральное государственное унитарное предприятие "Ордена трудового красного знамени Научно-исследовательский Физико-химический институт имени Л.Я. Карпова", Москва, Россия

> **E-mail: serge_demin@mail.ru* Поступила в редакцию 18.06.2020 г. После доработки 10.07.2020 г. Принята к публикации 27.07.2020 г.

Обсуждаются принципы диагностики эпилепсии на основе формализма функций памяти. Изучены авто-кросскорелляции электроэнцефалограмм здоровых испытуемых и пациентов с эпилепсией, регистрируемых в интериктальный период. Обнаружены характерные типы спектров мощности временных корреляционных функций и значительные изменения в проявлении эффектов статистической памяти при патологии. Выявлены нарушения динамической взаимосвязанности разных областей коры головного мозга в случае эпилепсии.

DOI: 10.31857/S0367676520110083

ВВЕДЕНИЕ

Эпилепсия является одним из распространенных хронических неврологических заболеваний человека, которое проявляется в предрасположенности организма к внезапному возникновению судорожных приступов [1]. Поскольку судорожные припадки – проявление целого ряда патологий головного мозга, точная диагностика эпилепсии представляет достаточно трудную задачу, для решения которой используют записи ЭЭГ (электроэнцефалограмм) непосредственно до, во время и после приступа. Одним из важнейших идентификаторов является наличие в записях ЭЭГ во время приступа специфических комплексов "пик-волна". В то же время существенная сложность в диагностировании указанного заболевания заключается в том, что возникновение приступа не поддается долгосрочному прогнозированию.

Кроме того, открытым остается вопрос выявления диагностических признаков эпилепсии из ЭЭГ человека в интериктальный период – промежуток времени, связанный с психическими и поведенческими расстройствами, возникающими у пациента между приступами. Анализ интериктальных ЭЭГ в большинстве случаев не позволяет выявить явные различия в биоэлектрической активности мозга здоровых испытуемых и пациентов. В то же время в некоторых работах [2] устанавливаются отдельные аспекты взаимодействия различных областей коры головного мозга при эпилепсии в интериктальный период. Изучение ЭЭГ, в том числе интериктальных, с целью ранней диагностики эпилепсии представляет собой важную задачу современной медицины. Использование методов статистического анализа записей биоэлектрической активности позволяет продвинуться в понимании физических механизмов развития патологий мозга [3–5].

В настоящей работе демонстрируются возможности формализма функций памяти (ФФП) [6–8] в выявлении диагностических признаков эпилепсии при исследовании динамических и спектральных характеристик интериктальных ЭЭГ. Отмечено, что специфические особенности патологической мозговой активности проявляются в изменении динамики сигналов отдельных областей коры головного мозга, а также в характере их взаимодействия.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ФОРМАЛИЗМА ФУНКЦИЙ ПАМЯТИ

Для анализа корреляций и эффектов статистической памяти в динамике ЭЭГ сигналов при эпилепсии мы используем ФФП. Эффекты статистической памяти описывают сложный и скрытый характер рождения, распространения и затухания корреляций. Они порождаются внутренними взаимодействиями в исследуемых системах и эффектами последействия.

Исследуемый сигнал представляется в виде последовательности значений случайной величины *X*:

$$X = \{x(T), x(T + \tau), \dots, x(T + (N - 1)\tau)\}, \quad (1)$$

где T — начальный момент времени, $(N-1)\tau$ — общее время регистрации сигнала, τ — временной шаг дискретизации.

$$\langle X \rangle = \frac{1}{N} \sum_{j=0}^{N-1} x \left(T + j\tau \right), \quad x_j = x \left(T + j\tau \right),$$

$$\delta x_j = x_j - \langle X \rangle, \quad \sigma^2 = \frac{1}{N} \sum_{j=0}^{N-1} \delta x_j^2.$$

$$(2)$$

Здесь $\langle X \rangle$ – среднее значение, δx_j – флуктуации, σ^2 – дисперсия случайной величины *X*.

В рамках ФФП исходная временная корреляционная функция (ВКФ) $a(t) = M_0(t)$

$$a(t) = \frac{1}{(N-m)\sigma^2} \sum_{j=0}^{N-m-1} \delta x_j \delta x_{j+m}$$
(3)

связывается с функциями памяти первого $M_1(t)$ и последующих порядков цепочкой взаимосвязанных конечно-разностных уравнений:

$$\frac{\Delta a(t)}{\Delta t} = \lambda_1 a(t) - \tau \Lambda_1 \sum_{j=0}^{m-1} M_1(j\tau) a(t-j\tau), \dots$$
(4)

Здесь λ_1 — первый кинетический параметр, который определяет собственное значение квазиоператора Лиувилля \hat{L} , Λ_1 — релаксационный параметр:

$$\lambda_{1} = i \frac{\left\langle \mathbf{W}_{1} \hat{L} \mathbf{W}_{1} \right\rangle}{\left\langle \left| \mathbf{W}_{1} \right|^{2} \right\rangle}, \quad \Lambda_{1} = \frac{\left\langle \left| \mathbf{W}_{1} \right|^{2} \right\rangle}{\left\langle \left| \mathbf{W}_{0} \right|^{2} \right\rangle}.$$
 (5)

Динамические ортогональные переменные W_n в уравнении (5) представлены в виде *k*-компонентных векторов состояния системы:

$$W_{0} = (\delta x(T), \delta x(T + \tau), \dots, \delta x(T + (k - 1)\tau)), W_{1} = (i\hat{L} - \lambda_{1})W_{0}.$$
 (6)

Для упрощения процесса вычисления переменных W_n можно воспользоваться процедурой ортогонализации Грама–Шмидта:

$$\langle \mathbf{W}_{n}, \mathbf{W}_{m} \rangle = \delta_{n,m} \left\langle |\mathbf{W}_{n}|^{2} \right\rangle,$$
 (7)

где $\delta_{n.m}$ – символ Кронекера.

Функция памяти $M_1(t)$ в уравнении (4) имеет вид:

$$M_{1}(t) = \frac{\left\langle \mathbf{W}_{1} \left(1 + i\tau \hat{L} \right)^{j} \mathbf{W}_{1} \right\rangle}{\left\langle \left| \mathbf{W}_{1} \right|^{2} \right\rangle}.$$
 (8)

Далее вводятся спектры мощности ВКФ a(t) и функции памяти первого порядка $M_1(t)$:

$$\mu_{0}(\mathbf{v}) = \left| \tau \sum_{j=0}^{N-1} a(j\tau) \cos 2\pi \mathbf{v} j\tau \right|^{2},$$

$$\mu_{1}(\mathbf{v}) = \left| \tau \sum_{j=0}^{N-1} M_{1}(j\tau) \cos 2\pi \mathbf{v} j\tau \right|^{2}$$
(9)

и мера, характеризующая степень проявления эффектов статистической памяти, — параметр немарковости [6, 8]:

$$\varepsilon_{1}(\mathbf{v}) = \left\{ \frac{\mu_{0}(\mathbf{v})}{\mu_{1}(\mathbf{v})} \right\}^{\frac{1}{2}}.$$
 (10)

Воспользуемся значением параметра на нулевой частоте $\varepsilon_1(0)$. Данный параметр позволяет количественно оценить степень проявления эффектов статистической памяти в исследуемой динамике: если $\varepsilon_1(0) \ge 1$, рассматриваемая динамика характеризуется слабыми эффектами памяти. Уменьшение меры указывает на удлинение времени существования памяти. В случае, когда $\varepsilon_1(0) \sim 1$, процессы характеризуются долговременной (сильной) статистической памятью. Также можно выделить промежуточную ситуацию, когда $\varepsilon_1(0) > 1$. В этом случае изучаемая динамика демонстрирует умеренное проявление эффектов памяти.

Кросс-корреляторы позволяют получить прямую информацию о динамике корреляционных взаимосвязей между одновременно измеряемыми сигналами — динамическими переменными *X* и *Y* одной сущности, фиксируемыми в пространственно разнесенных точках *i* и *j* исследуемой системы [7–9]. Соответствующее выражение для "двухточечных" корреляторов представляется в виде:

$$q_{ij}\left(\tau, \theta_{ij}\right) = \left\langle \left[\frac{X(t) - X(t + \tau)}{\sqrt{2}\sigma_{j}}\right] \times \left[\frac{Y(t + \theta_{ij}) - Y(t + \theta_{ij} + \tau)}{\sqrt{2}\sigma_{j}}\right] \right\rangle,$$
(11)

где τ — время задержки ($\tau > 0$), θ_{ij} — параметр смещения во времени, σ_i , σ_j — среднеквадратичные отклонения случайных величин *X*, *Y*. Фактически речь идет о зависимостях значений $q_{ij}(\tau, \theta_{ij})$ кросскорреляторов от τ , θ_{ij} как временных параметров, то есть о пространственном представлении $q_{ij}(\tau, \theta_{ij})$. При этом знак и величина параметра θ_{ij} при максимальных величинах $q_{ij}(\tau, \theta_{ij})$ (-1, 1) характеризуют причинно-следственную связь сигналов X и Y, а также характерное время передачи информации между пространственно разнесенными точками (областями).

РЕГИСТРАЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ

Экспериментальные данные были получены в ходе международного сотрудничества с проф. Дж. Баттачария (Joydepp Bhattacharya) из Голдсмитс Лондонского университета (Goldsmiths, University of London). Дж. Баттачария возглавляет исследовательскую группу по когнитивным и нейронаукам. Ранее во взаимодействии с ним в результате анализа авто- и кросскореляций в магнитоэнцефалограммах пациента и контрольной группы статистическими методами были установлены диагностические критерии фоточувствительной эпилепсии [8, 9].

Электроэнцефалограммы фиксировались расположенными 16 электродами, согласно международной системе размещения электродов "10-20" (рис. 1). Регистрация ЭЭГ осуществлялась для представителей контрольной группы (9 человек, средний возраст – 32.5 г.) без выявленных психических патологий и неврологических отклонений и пациентов с диагнозом эпилепсия в интериктальный период (8 человек, средний возраст – 30.5 г.) в состоянии спокойного бодрствования с закрытыми глазами. Возрастной диапазон для всех волонтеров составил 18-65 лет. Электроэнцефалограммы фиксировались в течение 10 с с частотой дискретизации 200 Гц [10].

ИССЛЕДОВАНИЕ ЧАСТОТНОГО ПОВЕДЕНИЯ ЭЭГ ЧЕЛОВЕКА

Анализ спектров мощности ВКФ позволил выделить основные типы и провести дифференциацию частотного поведения сигналов ЭЭГ с разных участков коры головного мозга у здоровых испытуемых и пациентов. Спектры первого типа имеют фрактальную структуру и отсутствие различимых всплесков (рис. 2*a*). Второй и третий типы спектров характеризуются наличием доминирующего всплеска в диапазоне 5–16 Гц (второй тип, рис. 2*6*) или в диапазоне 49–52 Гц (третий тип, рис. 2*в*). К четвертому типу относятся спектры, содержащие оба всплеска, амплитуды которых различались не более чем в 10 раз, и менее значительные пики в других диапазонах (рис. 2*г*).

Рис. 1. Международная система размещения электродов "10–20". Электроды медианной линии не рассматриваются в данном исследовании.

Следует отметить, что спектральное поведение электроэнцефалограмм для пациентов относится в подавляющем большинстве ко второму типу, в то время как в динамике ЭЭГ здоровых испытуемых проявляются разные сценарии (I, II, IV типы). Исследование спектров электроэнцефалограмм, фиксируемых с определенных электродов, выступает диагностическим критерием патологической активности мозга. Проведенная дифференциация позволяет в первом приближении выделить различимые электроды, имеющие качественную ценность для идентификации эпилепсии: F_1 , $F_2, T_5, P_3, P_4, T_6, O_1, O_2$. Более объективная картина в выделении характерного типа спектрального поведения сигналов ЭЭГ для контрольной группы и пациентов может быть получена при анализе максимального набора экспериментальных данных.

АНАЛИЗ ЭФФЕКТОВ СТАТИСТИЧЕСКОЙ ПАМЯТИ В ИНТЕРИКТАЛЬНЫХ ЭЭГ

Для исследования эффектов статистической памяти в динамике ЭЭГ сигналов воспользуемся параметром $\varepsilon_1(0)$. Данный параметр позволяет сопоставить времена существования корреляций и статистической памяти (в частотном случае — значения спектров мощности для ВКФ и функции памяти первого порядка).

В предыдущих работах авторов [6–8] показано, что в большинстве случаев аномальное поведение живых систем сопровождается усилением стати-

Рис. 2. Характерные типы спектров мощности временной корреляционной функции, обнаруженные для ЭЭГ сигналов здоровых испытуемых и пациентов. Распределение типов частотного поведения ЭЭГ для двух групп испытуемых в правой части рисунка.

стической памяти (значения параметра $\varepsilon_1(0) \sim 1$). Более высокие значения параметра $\varepsilon_1(0)$, полученные в настоящем исследовании, определяются тем, что ЭЭГ записи для пациентов осуществлялись в интериктальный период. Диапазон $\varepsilon_1(0)$ для контрольной группы составляет 19.2–58.1, тогда как для пациентов 10.0–19.7.

На рис. 3 продемонстрированы отношения средних значений параметра $\varepsilon_1(0)$ для группы здоровых испытуемых и пациентов в зависимости от областей мозга. Наибольшие различия (в 3.5 раза) обнаружены для электродов: F_1 , T_5 , O_2 . Значительное усиление эффектов статистической памяти в динамике ЭЭГ сигналов указанных электродов — диагностический признак эпилепсии.

Рис. 3. Отношения средних значений параметра $\varepsilon_1(0)$ для двух групп испытуемых в зависимости от областей коры головного мозга человека. Маркеры указывают во сколько раз отличаются данные значения.

ИЗМЕНЕНИЕ ХАРАКТЕРА СИНХРОНИЗАЦИИ ЭЭГ СИГНАЛОВ ПРИ ЭПИЛЕПСИИ

Несомненную информационную значимость для диагностики неврологических заболеваний представляет установление соотношений между характерными частотами и фазами возбуждений различных участков коры головного мозга (объединений или ансамблей нейронов), поскольку определенный уровень синхронизации, выявляемый при анализе одновременно фиксируемых ЭЭГ сигналов, является необходимым условием функционирования мозга как целостной системы [7–9]. Установление определенного уровня таких взаимосвязей необходимо для оценки выхода за его пределы, что выступает признаком аномальной активности коры головного мозга.

На рис. 4 представлены трехмерные структуры кросс-корреляторов, построенные для ЭЭГ сигналов, фиксируемых смежными и удаленными электродами. Необходимо отметить, что взаимная динамика ЭЭГ здоровых испытуемых характеризуется разнообразными проявлениями синхронизации в зависимости от рассматриваемых комбинаций электродов. В редких случаях выявлялось отсутствие видимой синхронизации, что отражалось в структуре кросс-коррелятора. В случае исследования динамической взаимосвязанности ЭЭГ сигналов при патологии была установлена следующая особенность: уровень синхронизации значительно снижался при удалении друг от друга пары рассматриваемых электродов.

Рис. 4. Примеры кросс-корреляторов, построенных для ЭЭГ сигналов со смежных и удаленных электродов – областей коры головного мозга двух групп испытуемых.

ЗАКЛЮЧЕНИЕ

Изучение ЭЭГ, в том числе интериктальных, с целью ранней диагностики эпилепсии представляет собой важную задачу современной медицины. Использование методов статистического анализа записей биоэлектрической активности позволяет продвинуться в понимании физических механизмов развития патологии [11–14]. При статистическом анализе биомедицинских сигналов — электроэнцефалограмм, электрокортикограмм, магнитоэнцефалограмм следует иметь в виду, что диагностические возможности таких методов напрямую зависят от уровня развития медицинской техники, в частности средств их беспроводной передачи.

В ходе анализа были установлены основные типы спектрального поведения ЭЭГ сигналов и их распределение по областям коры головного мозга у здоровых испытуемых и пациентов. Проведенная дифференциация позволяет в первом приближении выделить электроды, имеющие диагностическую ценность. Выявлены области, демонстрирующие наиболее существенные различия в проявлении эффектов статистической памяти для двух групп людей. Несомненную информационную значимость для диагностики неврологических заболеваний представляет установление соотношений между характерными частотами и фазами возбуждений различных участков коры головного мозга — исследование синхронизации их функционирования. Обнаружены различия во взаимодействии смежных и удаленных участков головного мозга пациентов в сравнении с контрольной группой. При патологии большую степень синхронизации демонстрировали близко расположенные области, тогда как в контрольной группе высокий уровень синхронизации выявлялся даже для удаленных областей.

Совместное применение формализма функций памяти с другими методами анализа ЭЭГ сигналов человека при эпилепсии [15, 16] позволит продвинуться в разработке принципов диагностирования и распознания доклинических и клинических проявлений эпилептогенеза.

Работа выполнена за счет средств субсидии, выделенной в рамках государственной поддержки Казанского (Приволжского) федерального университета в целях повышения его конкурентоспособности среди ведущих мировых научнообразовательных центров. Отдельные теоретические результаты настоящего исследования были получены при финансовой поддержке РФФИ (проект № 14-02-31385-мол_а).

1573

СПИСОК ЛИТЕРАТУРЫ

- 1. Chang B.S. // New Engl. J. Med. 2003. V. 349. P. 1257.
- Sander J.W., O'Donoghue M.F. // Brit. Med. J. 1997. V. 314. P. 158.
- 3. Lahmiri S. // Phys. A. 2018. V. 490. P. 378.
- Chicheportichea R., Chakraborti A. // Phys. A. 2017. V. 474. P. 312.
- 5. *Khosla A., Khandnor P., Chand T.* // Biocybern. Biomed. Engin. 2020. V. 40. № 2. P. 649.
- Demin S.A., Yulmetyev R.M., Panischev O.Y. et al. // Phys. A. 2008. V. 387. P. 2100.
- 7. Панищев О.Ю., Демин С.А., Каплан А.Я. и др. // Мед. техн. 2013. Т. 47. № 3. С. 36; Panischev O.Y., Demin S.A., Kaplan A.Y. et al. // Biomed. Engin. 2013. V. 47. № 3. Р. 153.
- Panischev O.Y., Demin S.A., Bhattacharya J. // Phys. A. 2010. V. 389. P. 4958.
- 9. *Timashev S.F., Polyakov Y.S., Yulmetyev R.M. et al.* // Laser Phys. 2010. V. 20. № 3. P. 604.

- Bhattacharya J. // Acta Neurobiol. Exp. 2001. V. 61. P. 309.
- 11. *Mateos D.M., Wennberg R., Guevara R. et al.* // Phys. Rev. E. 2017. V. 96. Art. № 062410.
- Deeba F., Sanz-Leon P., Robinson P.A. // Phys. Rev. E. 2019. V. 100. Art. № 022407.
- 13. Sikdar D., Roy R., Mahadevappa M. // Biomed. Signal Process. 2018. V. 41. P. 264.
- 14. *Timashev S.F., Polyakov Y.S., Yulmetyev R.M. et al.* // Laser Phys. 2009. V. 19. № 4. P. 836.
- Грубов В.В., Ситникова Е.Ю., Короновский А.А. и др. // Изв. РАН. Сер. физ. 2012. Т. 76. № 12. С. 1520; Grubov V.V., Sitnikova E.Y., Koronovskii А.А. et al. // Bull. Russ. Acad. Sci. Phys. 2012. V. 76. Р. 1361.
- Грубов В.В., Короновский А.А., Ситникова Е.Ю. и др. // Изв. РАН. Сер. физ. 2014. Т. 78. № 12. С. 1525; Grubov V.V., Koronovskii А.А., Sitnikova E.Y. et al. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. P. 1242.