УДК 546.882.821.87

ВЗАИМОСВЯЗЬ ДИЭЛЕКТРИЧЕСКОЙ РЕЛАКСАЦИИ И ЭЛЕКТРОННЫХ СОСТОЯНИЙ НА ГРАНИЦАХ ЗЕРЕН КЕРАМИЧЕСКОГО СЕГНЕТОЭЛЕКТРИКА-ПОЛУПРОВОДНИКА

© 2020 г. Г. С. Григорян¹, А. М. Солодуха^{1, *}

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный университет", Воронеж, Россия

**E-mail: asn2@yandex.ru* Поступила в редакцию 18.06.2020 г. После доработки 10.07.2020 г. Принята к публикации 27.07.2020 г.

Представлены структурные данные, а также результаты исследования в слабых электрических полях методом импедансной спектроскопии релаксационных процессов в области температур ниже и выше сегнетоэлектрического фазового перехода поликристаллического титаната бария-стронция с примесью церия и лантана. В рамках модели Хейванга выполнены интерпретация результатов и расчет значений электрофизических параметров межзеренных границ.

DOI: 10.31857/S0367676520110113

Керамические полупроводниковые материалы со структурой перовскита давно привлекают внимание исследователей в связи с широкими возможностями практического применения этих соединений. Твердые растворы на основе титаната бария позволяют создавать разнообразные электронные компоненты: пьзодатчики, вариконды, позисторы, элементы памяти. Изменение электрических параметров таких материалов можно осуществлять введением различных примесей замещения в исходную кристаллическую решетку перовскита АВО₃. Ионы стронция в позициях А, образуя изовалентные твердые растворы, смещают точку Кюри T_C вниз по шкале температур [1]. Ионы редкоземельных металлов церия и лантана формирует полупроводниковые свойства, снижают Т_с и обусловливают размытию максимумов диэлектрической проницаемости [2-5].

Так при замещении ионов Ba^{2+} (ионный радиус 0.135 нм) на ионы La^{3+} (ионный радиус 0.115 нм), если концентрация последних не более 0.5 ат. %, получается сегнетоэлектрик-полупроводник *n*-типа:

$$La_2O_3 + 2TiO_2 \rightarrow 2La_{Ba}^{\cdot} + 2Ti_{Ti}^{\times} + \frac{1}{2}O_2 + 2e^{/}.$$
 (1)

Если концентрация превышает 0.5 ат. %, то зарядовое равновесие достигается образованием в решетке вакансий ионов бария либо титана:

$$La_2O_3 + 3TiO_2 \rightarrow 2La_{Ba}^{\bullet} + 3Ti_{Ti}^{\times} + 9O_0^{\times} + V_{Ba}^{//},$$
 (2)

$$2La_2O_3 + 3TiO_2 \rightarrow 4La_{Ba} + 3Ti_{Ti}^{\times} + 12O_O^{\times} + V_{Ti}^{////}.$$
 (3)

Замещение трехвалентным ионом лантана четырехвалентного иона титана (ионный радиус 0.068 нм) возможно, но менее вероятно.

Большой интерес исследователей привлекает также примесь ионов церия, которые могут находиться как в трехвалентном, так и четырехвалентном состояниях. Ион Ce^{3+} (ионный радиус 0.129 нм в А-позиции) может замещать ион бария по типу (1)–(3), а ион Ce^{4+} (ионный радиус 0.087 нм в В-позиции) замещает ион Ti^{4+} , и этот вариант более вероятен.

Для позисторного эффекта должна быть реализована реакция (1). Тогда объяснение ПТКС (положительного температурного коэффициента сопротивления) можно провести на основе модели Хейванга [6], в которой предполагается существование двойного барьера Шоттки вдоль границ зерен сегнетоэлектрика-полупроводника. Такой барьер формируется при захвате электронов акцепторными уровнями и приводит к образованию обедненных носителями заряда областей в оболочке зерна. Согласно Хейвангу

$$\varphi_s = \frac{e n_0 b^2}{2 \varepsilon_0 \varepsilon_{gb}},\tag{4}$$

где φ_s — высота потенциального барьера на границе зерен, e — заряд электрона, ε_0 — электрическая постоянная (СИ), ε_{gb} — относительная диэлектрическая проницаемость области внутренних границ зерен, n_0 —концентрация электронов в объеме полупроводника ($n_0 = N_d$, где N_d — концентрация доноров), b — ширина обедненной области

 $(b = N_e/2N_d$, где N_e — плотность заполненных электронных состояний на границах зерен).

В этом случае сопротивление образца может быть выражено формулой

$$R = R_0 \exp(e\varphi_s/kT), \tag{5}$$

где R_0 — предэкспоненциальный множитель, T — абсолютная температура, k — постоянная Больцмана.

Для N_e можно воспользоваться формулой, описывающей степень заполнения поверхностных уровней [7]:

$$N_e = \frac{N_s}{1 + \frac{N_c}{N_d} \exp\left(\frac{e\varphi_s - E_s}{kT}\right)},\tag{6}$$

где N_s — поверхностная плотность электронных состояний, N_c — эффективная плотность состояний в зоне проводимости, E_s — энергетический зазор между поверхностными уровнями и дном зоны проводимости.

Учтем, что в рассматриваемом интервале температур доноры полностью ионизированы, а основной рост сопротивления происходит в параэлектрической фазе сегнетоэлектрика-полупроводника, где для диэлектрической проницаемости є выполняется закон Кюри–Вейсса. Тогда для температур больших температуры Кюри окончательное выражение потенциала на границе зерна можно представить следующим образом [7]:

$$\varphi_s = \frac{eN_s^2(T-\theta)}{8C_c \varepsilon_0 N_d \left[1 + \frac{N_c}{N_d} \exp\left(\frac{e\varphi_s - E_s}{kT}\right)\right]^2},$$
(7)

где C_C – постоянная Кюри, θ – температура Кюри.

В модели считается, что каждое проводящее зерно окружено высокоомным слоем, на котором происходит основное падение напряжения. Это позволяет принять значение диэлектрической проницаемости области границ зерен с учетом сильного электрического поля. Тогда при температурах ниже θ диэлектрическая проницаемость велика и слабо зависит от температуры, а в области действия закона Кюри–Вейсса ($\varepsilon_{gb} \approx \varepsilon$) она резко уменьшается, что приводит к значительному увеличению ϕ_s и росту сопротивления.

Целью данной работы было изучение влияния комбинации примесей редкоземельных металлов на электрические свойства позисторной керамики, а также расчет плотности поверхностных электронных состояний границ зерен на основе диэлектрического отклика релаксационных процессов в образце.

Были исследованы образцы перовскитовой керамики, полученные по стандартной твердофазной технологии для позисторов. В исходный состав титаната бария-стронция Ba_{0.85}Sr_{0.15}TiO₃ Рис. 1. Изображение зерен керамики, полученное при помощи электронного микроскопа.

вводили примеси редкоземельных элементов лантана (0.3 ат. %) и церия (0.6 ат. %).

Морфологию, фазовый состав и структуру контролировали методами рентгеновского фазового анализа и растровой электронной микроскопии с помощью дифрактометра ARL X'TRA и микроскопа JSM-6380LV JEOL. Для электрических измерений использовали RLC-метр Wayne Kerr 4270. На образцы в виде дисков толщиной около 2 мм наносили электроды методом вжигания серебряной пасты. Измерения на постоянном токе показали, что зависимость электрического сопротивления образцов R от температуры типична для позисторов.

Данные рентгеноструктурного анализа позволяют утверждать, что синтезированная керамика соответствует тетрагональной фазе титаната бария. Добавки не оказывают заметного влияния на положение и величину пиков интенсивности рассеяния ввиду их незначительной концентрации.

Результаты электронной микроскопии представлены на рис. 1. Видно, что зерна имеют четкую огранку, что дает возможность провести оценку их среднего размера и использовать эту величину для теоретических расчетов.

Изучение диэлектрических свойств (рис. 2) показало большую величину реальной части диэлектрической проницаемости ε ' в широком интервале температур за счет сильного размытия ее максимумов. Это, вероятно, связано с ролью примеси церия, т.к. согласно [5], примесь лантана до 8 ат. % заметного размытия $\varepsilon'(T)$ не демонстрирует.

Из рис. 2 видно, что смещение максимумов зависимости мнимой части электрического модуля *M*" от температуры с ростом частоты тестового сигнала происходит в сторону низких температур. Это указывает на присутствие в *RC*-цепочке (определяющей время релаксации) сопротивления гра-

Рис. 2. Зависимости действительной части диэлектрической проницаемости (1-3) и мнимой части электрического модуля (4-6) от температуры на различных частотах измерительного сигнала: 1 - 10; 2 - 100; 3 - 1000; 4 - 1; 5 - 10; 6 - 100 кГц.

ниц зерен, которое резко возрастает в параэлектрической фазе. Особенностью релаксационного процесса в данном случае является диэлектрический отклик не объема зерен, а тонких приграничных слоев.

Будем считать, что для максимумов *М*" выполняются соотношения

$$z = RC; \quad \tau = 1/2 \pi f_{max}, \tag{8}$$

где τ — время релаксации, f_{max} — частота, при которой наблюдается максимум. Тогда, получив зависимость R(T) на постоянном токе и полагая, что Rопределяется совокупностью всех участков границ зерен, можно определить величину электрической емкости C.

Расчеты показывают, что в данном температурном интервале C изменяется незначительно и равна 0.6 нФ. Поскольку электрический модуль связан с участками наименьшей емкости, то можно предположить, что эта емкость межзеренной фазы. Следовательно, время релаксации для данного процесса можно выразить как произведение сопротивления обедненных носителями заряда областей R на емкость межзеренной прослойки C. Учтем соотношение, рассмотренное в [8]

$$\dot{\varepsilon_m} = \varepsilon_{gb}(d/2b), \tag{9}$$

где ε'_m — измеренное значение действительной части диэлектрической проницаемости, d — средний размер зерен. Тогда, на основе данных структурных и электрических исследований, а также формулы (4), получим следующую зависи-

Рис. 3. Зависимость логарифма сопротивления образца на постоянном токе от величины $1/\varepsilon_{gb}T$. Значения ε_{gb} приводятся для частоты 1 МГц.

мость сопротивления R образца от температуры T на постоянном токе:

$$R(T) = R_0 \exp(e^2 N_e d / 8\varepsilon_0 \varepsilon_{gb} kT).$$
(10)

Чтобы воспользоваться формулой (7), учтем, что для размытого фазового перехода классический закон Кюри—Вейсса не выполняется, поэтому следует воспользоваться следующей формулой [5]:

$$\left|\varepsilon'-1\right|\varepsilon'_{max} = (T-T_{max})^{\gamma}/C_1,$$
 (11)

где ε'_{max} – наибольшее значение ε' при температуре T_{max} ; γ и C_1 – константы.

Параметр γ определяется по наклону графика зависимости (11) в двойном логарифмическом масштабе, затем вычисляется величина C_1 .

Произведем замену параметров θ и C_c в (7) с учетом выражения (11) и определим N_e по наклону графика в координатах $\ln R - 1/\epsilon_{gb}T$ (см. прямолинейный участок на рис. 3). Далее рассчитаем зависимости R(T) из уравнения (5) для $T > T_{max}$ с учетом формул (6), (7). Эти данные сопоставим с экспериментальной зависимостью R(T).

Результаты расчета, выполненного с помощью процедуры "гооt" математического пакета Mathсаd показали хорошее согласие с данными эксперимента (см. рис. 4). Значения параметров представлены в табл. 1. N_c принималось равной концентрации ионов титана в решетке перовскита (1.56 · 10²⁸ м⁻³).

Таблица 1. Данные эксперимента и расчетов

γ	<i>R</i> ₀ , Ом	$C_1, \mathrm{K}^{1.14}$	T_{max}, K	<i>d</i> , мкм	<i>Еs</i> , эВ	N_e , м ⁻²	$N_{s}, {\rm m}^{-2}$	N_d , m ⁻³
1.14	35	$6.17 \cdot 10^{5}$	343	4.0	1.06	$2.94 \cdot 10^{17}$	$1.11 \cdot 10^{18}$	$1.40 \cdot 10^{24}$

Рис. 4. Зависимость сопротивления образца от температуры на постоянном токе: *1* – данные эксперимента, *2* – расчет.

Таким образом, исследование процессов диэлектрической релаксации в керамике показало, что комбинированная примесь лантана и церия является эффективной добавкой для титаната бариястронция как с точки зрения реализации эффекта ПТКС, так и для расширения температурного интервала с высоким значением величины диэлектрической проницаемости. Кроме того, результаты исследования диэлектрического отклика дают возможность провести количественную оценку (в рамках модели Хейванга) плотности электронных состояний на границах зерен и положение поверхностных энергетических уровней в пределах запрещенной зоны перовскита.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Moulson A.J.* Electroceramics: materials, properties, applications. Wiley, 2003. 557 p.
- 2. Billah M., Ahmed A., Rahman Md.M. // AIP Conf. Proc. 2016. V. 1754. № 7. Art. № 030006.
- 3. *Tsur Y. Dunbar T.D., Randall C.A.* // J. Electroceram. 2001. V. 7. P. 25.
- Hwang J.H., Han Y.H. // J. Amer. Ceram. Soc. 2001. V. 84. № 8. P. 1750.
- Morrison F.D., Sinclair D.C., West A.R. // J. Appl. Phys. 1999. V. 86. № 11. P. 6355.
- 6. Heywang W. // J. Mater. Sci. 1971. V. 6. P. 1214.
- 7. Шефтель И.Т. Терморезисторы. М.: Наука, 1973. 416 с.
- 8. Zhang F., Zhang Z. // J. Mater. Sci. 1999. V. 34. P. 5051.