УДК 615.849.1:536.2.023:519.688

МОЩНЫЙ ЭЛЕКТРОННЫЙ УСКОРИТЕЛЬ ДЛЯ ПРОИЗВОДСТВА НЕЙТРОНОВ И РАДИОИЗОТОПОВ

© 2020 г. Е. А. Онищук^{1, 2, *}, Ю. А. Кураченко³, Е. С. Матусевич¹

¹Обнинский институт атомной энергетики — филиал федерального государственного автономного образовательного учреждения высшего образования "Национальный исследовательский ядерный университет "МИФИ",

Обнинск, Россия

²Автономная некоммерческая организация дополнительного профессионального образования

"Техническая академия Росатома", Обнинск, Россия

 $^{3}\Phi$ едеральное государственное бюджетное научное учреждение

"Всероссийский научно-исследовательский институт радиологии и агроэкологии", Обнинск, Россия

*E-mail: elenaonischuk@yandex.ru

Поступила в редакцию 18.06.2020 г. После доработки 10.07.2020 г.

Принята к публикации 27.07.2020 г.

Исследованы возможности использования компактных линейных ускорителей электронов для производства радиоизотопов медицинского назначения и нейтронной терапии. Проведенный анализ расчетных данных плотностей потока нейтронов и гамма-квантов показывает, что производство фотонейтронов и радиоизотопов эффективно при использовании тормозного излучения, генерируемого тяжелой металлической мишенью при ее возбуждении в области энергий гигантского дипольного резонанса.

DOI: 10.31857/S0367676520110228

ВВЕДЕНИЕ

Высокоинтенсивный источник фотонейтронов для медицинского применения рассмотрен в [1]. В [2] получена оптимальная конфигурация блока вывода пучка фотонейтронов для осушествления нейтронозахватной терапии (НЗТ), в [3, 4] изучены термогидравлика комбинированной проточной мишени (W + Ga) и возможности применения пучка для лучевой терапии. Стационарный фрагмент мишени, которым является матрица из тугоплавкого вольфрама, через которую протекает галлий, позволяет резко увеличить выход фотонейтронов по сравнению с мишенью, состоящей только из галлия. Для нормировки результатов расчета использовались данные доступного ускорителя MEVEX [5] – средний ток 4 мА при энергии электронов 35 МэВ.

Природный галлий представлен двумя изотопами: ⁶⁹Ga(60.1%) + ⁷¹Ga (39.9%). Это легкоплавкий металл ($t_{пл} = 29.8^{\circ}$ С) плотностью 5.904 г · см⁻³ в твердом состоянии и 6.095 г · см⁻³ в жидком. После расплавления галлий длительное время остается в жидкой фазе при комнатной температуре. При этом галлий имеет широкий диапазон температур жидкой фазы (~2200°С), что обеспечивает легкое отведение радиационного энерговыделения. Активация природного галлия происходит путем фотореакций и реакций под действием собственных нейтронов. Основные процессы: 69,71 Ga $(\gamma, n)^{68,70}$ Ga, 69,71 Ga $(n, 2n)^{68,70}$ Ga, 69,71 Ga $(n, \gamma)^{70,72}$ Ga приводят к короткоживущим продуктам 68 Ga ($T_{1/2} = 68.3$ мин), 70 Ga ($T_{1/2} = 21.2$ мин) и 72 Ga ($T_{1/2} = 14.1$ ч). Как показывают расчеты, при генерации нейтронных полей, приемлемых для H3T, и при условии циркуляции рабочего тела мишени, полная активность галлия спадает до уровня естественного фона за время, не превышающее 4 сут (рис. 1).

Результаты, приводимые далее, получены в расчетах транспорта излучений с использованием библиотеки ядерных данных TENDL-2014/2017, основанной на коде расчета характеристик ядерных реакций TALYS-1.9. Термогидравлика мишени была рассчитана с помощью кода STAR-CD[®] [6].

1. ГЕНЕРАЦИЯ ФОТОНЕЙТРОНОВ

1.1. Модернизация НЗТ-пучка

Целью модернизации пучка было увеличить плотность потока нейтронов без ухудшения характеристик пучка, существенных для НЗТ и защиты пациента. Для модернизации был выбран вариант вывода пучка с максимальным значени-

Рис. 1. Спад активности галлия после типичного сценария облучения (в отн. ед.). Пунктирной линией обозначен уровень естественного фона, серой широкой линией — экспериментальные данные, черной линией — данные, полученные при расчетах.

ем плотности потока на выходе [4]. На рис. 2 сопоставлены сечения оптимальной версии блока вывода пучка [4] и версии, предлагаемой в настоящей работе.

Блок вывода пучка представляет собой осесимметричную сборку из цилиндрических и конических слоев и выполняет защитные и коллимирующие функции, а также функции формирователя спектра, требуемого для H3T.

При взаимодействии ускоренных электронов с мишенью W + Ga основным каналом потери энергии является тормозное излучение. При энергиях электронов выше ~8–10 МэВ тормозные гамма-кванты, поглощаясь ядрами W и Ga, генерируют нейтроны в реакциях (γ , *n*) в области энергий гигантского дипольного резонанса с относительно большими сечениями. Так, максимальные (γ , *n*) сечения на основных изотопах естественного ванадия при энергии ~15 МэВ лежат в диапазоне 490–670 мб, для ⁶⁹Ga и ⁷¹Ga – 102 мб при 17 МэВ и 160 мб при 19 МэВ соответственно.

Дополнительные расчеты дали возможность обоснованно внести изменения в конфигурацию и материальный состав блока вывода пучка, позволившие безопасно увеличить главный функционал — плотность потока эпитепловых нейтронов. Эти изменения состояли в следующем:

– пластина Cd на выходе канала была удалена, а слой гидрида циркония заменен свинцом. Роль удаленных материалов в уменьшении потока тепловых нейтронов пренебрежимо мала: эпитепловые нейтроны, входящие в ткань, генерируют вблизи входа обратнорассеянные тепловые нейтроны, интенсивность которых значительно превышает поток тепловых нейтронов из канала;

Рис. 2. Осевые сечения блока вывода осесимметричного пучка для H3T: вариант из [4] (*a*) и модернизированная версия (δ). Представлены фрагменты блока вывода с коллимационной системой: канал, заполненный формирователем спектра (1, дифторид свинца PbF2, выполняет также функцию гамма-фильтра); канал окружен коллиматором (2, Pb, основная функция – замедление и канализация нейтронов). В коллимационной системе гидрид циркония ZrH_{1.8} (3) несет функцию легкой защиты, на выходе канала борированный полиэтилен (4) и пластинка Cd толщиной 1 мм (5) являются фильтром тепловых нейтронов.

 комбинированная проточная мишень была развернута соосно оси вывода пучка нейтронов и заключена в сферический вольфрамовый корпус, заполненный галлием. Эта мера позволила улучшить теплосъем, увеличить генерацию нейтронов и уменьшить выход тормозного излучения.

1.2. Качество пучка для НЗТ

Качество пучка для H3T описываются характеристиками "in air" и "in phantom" [4]. Функционалы "in air" описывают поле излучений на выходе пучка без облучаемого фантома и упрощают задачу выбора оптимальных конфигурации и состава материалов блока вывода (без трудоемких расчетов функционалов "in phantom"). Предполагается, что если характеристики пучка "в воздухе" удовлетворяют конкретным критериям, вырабо-

МОЩНЫЙ ЭЛЕКТРОННЫЙ УСКОРИТЕЛЬ

		Ф _{tot} , см ⁻² с ⁻¹ , 10 ⁹	$\Phi_{epi}\Phi_{tot}^{-1},\%$	$\Phi_{fast} \Phi_{tot}^{-1}, \%$	$\Phi_{\text{therm}}\Phi_{tot}^{-1},\%$	E^{Φ}_{aver} , МэВ	
Значения, желательные для НЗТ		≥1	~100	$\rightarrow 0$	$\rightarrow 0$	_	
FCB MIT		4.2	данные отсутствуют				
MAPC		1.24	81.6	13.4	5.0	0.0337	
TAPIRO		1.07	73.6	6.5	20.0	0.00857	
Фотонейтроны	"лучшая" версия [4]	18.5	74.9	25.1	0.014	0.0345	
	данная работа	27.8	73.3	21.6	5.11	0.0325	

Таблица 1. Плотность потока, спектральные характеристики и средняя энергия нейтронов на выходе эталонного, существующего и проектируемого пучков реакторов в сравнении с характеристиками пучков фотонейтронов

Таблица 2. Характеристики НЗТ на выходе реакторных и фотоядерных пучков: плотность потока эпитепловых нейтронов, "отравление" пучка гамма-излучением и быстрыми нейтронами, направленность

		$\Phi_{epi}, \ { m cm}^{-2}{ m c}^{-1}, 10^9$	$D_{\gamma} \Phi_{epi}^{-1},$ сГр · см ² , 10 ⁻¹¹	$D_{fast} \Phi_{epi}^{-1},$ сГр·см ² , 10 ⁻¹¹	$J_{epi} \Phi_{epi}^{-1}$ ("ток-к потоку")
Значения, желательные для НЗТ		≥1	<2-5	<2-5	≥0.7
FCB MIT		—	1.3	4.3	0.8
MAPC		1.01	5.38	11.8	0.8
TAPIRO		0.788	6.77	8.49	0.8
Фотонейтроны	"лучшая" версия [4]	13.9	0.0407	15.9	0.8
	данная работа	20.4	0.0262	13.4	0.8

танным мировым сообществом, то следует ожидать, что и функционалы "в фантоме" также будут удовлетворять требованиям H3T.

Для сопоставления с рассчитываемыми пучками из мишени электронного ускорителя привлекаются характеристики нейтронных пучков, существующих и проектируемого реакторов:

 пучок FCB MIT, который является "эталонным" для H3T (измерения, в настоящее время выведен из эксплуатации [7]);

пучок эпитепловой колонны быстрого реактора ТАРІRO [8], предназначенный для применения в НЗТ (расчет подтвержден измерениями; пучок выведен из эксплуатации);

 пучок специализированного медицинского реактора МАРС (расчет, [9]).

Базовые значения характеристик "в воздухе" для сравниваемых пучков приведены в табл. 1. Для фотонейтронов представлены данные по первичной расчетной версии [4] и обновленной ныне версии блока выведения (рис. 2). Критерии для H3T представлены в табл. 2. Из приведенных данных следует вывод, что по критериям "в воздухе" предлагаемый фотонейтронный пучок не уступает и даже частично превосходит характеристики реакторных пучков для H3T. Данный вывод подтверждается рис. 3, на котором представлены спектральные характеристики нейтронов на выходе пучка.

2. ГЕНЕРАЦИЯ РАДИОИЗОТОПОВ

Для задач генерации медицинских радиоизотопов была рассчитаны характеристики модельной системы, состоящей из цилиндрического бака с замедлителем — тяжелой водой D₂O. В центре бака располагается мишень, а на периферии —

Рис. 3. Спектры нейтронов на выходе пучка для НЗТ.

Материал мишени	Tl	Pb	Bi	²³⁸ U	Pb + Bi (45% + 55%)
<i>R</i> , см	1.0	0.75	0.75	0.50	0.75
<i>H</i> , см	1.0	0.75	1.0	1.0	1.5
Плотность г \cdot см ⁻³	11.843	11.342	9.79	19.05	10.6
Точка плавления, °С	304	324	271	1133	124
Выход тормозного излучения, c^{-1}	$1.29 \cdot 10^{17}$	$1.32 \cdot 10^{17}$	$1.34 \cdot 10^{17}$	$1.25 \cdot 10^{17}$	$1.33 \cdot 10^{17}$
Средняя энергия, МэВ	14.7	15.9	15.6	15.5	15.7

Таблица 3. Характеристики мишени для производства радиоизотопов

подкритическая сборка с $k_{eff} \leq 0.90$. Сборки с такой подкритичностью не требуют наличия СУЗ при работе. Сборка состоит из укороченных твэлов реактора БН-600, охлаждаемых тяжелой водой. В результате для модельной системы получено достаточно выровненное поле нейтронов внутри бака. Максимальные значения плотности потока нейтронов $\Phi_{tot} = 6.19 \cdot 10^{11} \text{ см}^2 \cdot \text{с}^{-1}$ в непосредственной близости к мишени, максимум плотности потока тепловых нейтронов $\Phi_{th} = 3.09 \cdot 10^{11} \text{ см}^2 \cdot \text{с}^{-1}$ отстоит от мишени на ~21 см.

Исследованные цилиндрические мишени были оптимизированы на максимальный выход тормозного излучения при падении пучка электронов радиусом 0.5 см на торец цилиндра (табл. 3, рис. 4). Экстремумы в задачах оптимизации достаточно пологи, поэтому шаг в размерах мишеней 0.25 см. При выбранных параметрах пучка электронов выход тормозного излучения из опти-

Рис. 4. Сечения сферической расчетной модели производства 99 Мо. Внешний слой — 100 Мо. Диаметр внутреннего свинцово-висмутового цилиндра 1.5 см.

мальных мишеней практически одинаков для всех тяжелых материалов. Средняя энергия тормозного излучения лежит в области гигантского дипольного резонанса и, что весьма удачно, вблизи энергии максимальных сечений реакции (γ , n) для вольфрама. По технологическим соображениям в качестве мишени предпочтительна эвтектика свинец—висмут; в данном случае этот сплав будет являться и теплоносителем.

Оценим производство ⁹⁹Мо тормозным излучением в реакции 100 Мо(γ , *n*)⁹⁹Мо. Условная схема облучения представлена на рис. 4.

Цилиндрическая мишень Pb–Bi заключена в сферический слой материнского нуклида ¹⁰⁰Мо (рис. 4). Уравнение наработки ⁹⁹Мо можно записать следующим образом:

$$\frac{d\rho^{99}}{dt} = \sigma\phi_0\rho^{100} - \lambda\rho^{99},\tag{1}$$

где ρ^{99} , ρ^{100} – ядерная плотность (10^{24} см⁻³) нарабатываемого и материнского изотопа; $\sigma \Phi_0 \rho^{100}$ – скорость (γ , *n*) реакций (см⁻³ · c⁻¹); σ , Φ_0 – групповые вектора сечения (γ , *n*) реакции (б) и плотности потока фотонов (см⁻² · c⁻¹) размерностью табличного представления сечения (индекс группы опущен); λ – постоянная распада (c⁻¹).

Интегрирование (1) в интервале $[0-t_{irr}]$ времени облучения с учетом начального условия $\rho^{99}(t=0) = 0$ дает плотность наработанных ядер $[cm^{-3}]$:

$$\rho^{99} = \sigma \phi_0 \rho^{100} \left(1 - \exp\left(-\lambda t_{\rm irr} \right) \right) / \lambda. \tag{2}$$

При этом удельная активность [Бк \cdot см⁻³] наработанного изотопа $A = \lambda \rho^{99}$:

$$A = \sigma \Phi_0 \rho^{100} \left(1 - \exp\left(-\lambda t_{irr}\right) \right). \tag{3}$$

Сравним полученные результаты с данными для фотоядерной реакции (ү, *n*) в [10] при производстве ⁹⁹Мо на ускорителе электронов мощностью 14 кВт с энергией 40 МэВ. Для высокообогащенного (96% ¹⁰⁰Мо) образца массой 14.4 г при 24-часовой экспозиции производится активность ~25 Ки или 1.74 Ки · г⁻¹ [10]. Наши данные для той

же экспозиции 1.78 кКи и 5.96 Ки \cdot г⁻¹ при массе образца 311 г (рис. 4), среднем токе 4 мА [5] и 100% обогащении ¹⁰⁰Мо.

ЗАКЛЮЧЕНИЕ

Компактность современных мощных ускорителей и хорошая управляемость электронным пучком позволяют обеспечить бинарное применение тормозного излучения, генерируемого в тяжелых мишенях при энергиях гигантского дипольного резонанса, для производства нейтронов и радиоизотопов. Предлагаемая схема генерации имеет очевидные преимущества перед реакторной генерацией. В первую очередь это экологическая чистота: активность теплоносителя спадает быстро, продукты деления в установке отсутствуют, активация оборудования локализована. Кроме того, в этом случае степень радиационной и ядерной безопасности неизмеримо выше, чем при реакторной генерации. Безопасность, а также относительно небольшие габариты установки позволяют размещать ее непосредственно в клинике. Наконец, плотность потока эпитепловых нейтронов на выходе пучка (необходимая для НЗТ) на порядок больше плотности потока нейтронов, существующих и проектируемых реакторных пучков. Высокая эффективность генерации ⁹⁹Мо, предшественника основного диагностического радиоизотопа ^{99nт}Гс, улучшает экономику установки и расширяет ее возможности.

СПИСОК ЛИТЕРАТУРЫ

- 1. Кураченко Ю.А., Вознесенский Н.К., Говердовский А.А., Рачков В.И. // Мед. физ. 2012. № 2. С. 29.
- 2. *Кураченко Ю.А.* // Изв. вузов. Ядерн. энерг. 2014. № 4. С. 41.
- 3. *Кураченко Ю.А., Забарянский Ю.Г., Онищук Е.А.* // Изв. вузов. Ядерн. энерг. 2016. № 3. С. 150.
- 4. *Кураченко Ю.А., Забарянский Ю.Г., Онищук Е.А.* // Мед. радиол. рад. безопасность. 2017. № 3. С. 33.
- 5. http://www.mevex.com/Brochures/Brochure_High_Energy.pdf.
- 6. *CD-adapco Engineering Simulation Software CAE and CFD Software.*
- Riley K.J., Binns P.J., Harling O.K. // Phys. Med. Biol. 2003. V. 48. P. 943.
- 8. Agosteo S., Foglio Para A., Gambarini G. et al. IAEA-TECDOC-1223, 2001. P. 1.
- 9. Кураченко Ю.А. // Мед. физ. 2008. Т. 38. № 2. С. 20.
- 10. *Ralph G.B., Jerry D.C., David A.P. et al.* // Nucl. Technol. 1999. V. 126. P. 102.