УДК 669.35.539.211

ЭНЕРГИЯ АКТИВАЦИИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ МОНОКРИСТАЛЛОВ Ni₃Ge С РАЗНЫМИ ОРИЕНТАЦИЯМИ ОСИ СЖАТИЯ¹

© 2020 г. Ю. В. Соловьева¹, С. В. Старенченко^{1, *}, В. А. Старенченко¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования Томский государственный архитектурно-строительный университет, Томск, Россия

> *E-mail: sve-starenchenko@yandex.ru Поступила в редакцию 18.06.2020 г. После доработки 10.07.2020 г. Принята к публикации 27.07.2020 г.

Приведены результаты термоактивационного анализа пластической деформации монокристаллов интерметаллида Ni₃Ge. Определены значения эффективной энергии активации пластической деформации для разных температур испытания. Рассматривается влияние ориентации монокристалла на величину эффективной энергии активации. Исследования проведены для кристаллов деформированных вдоль оси [100] и [234].

DOI: 10.31857/S0367676520110289

введение

Пластическая деформация кристаллических тел является термически активируемым процессом, связанным с перестройкой атомной структуры кристалла под действием термических флуктуаций. Термоактивационный анализ пластического поведения материалов, в основе которого лежит рассмотрение движения дислокации под действием приложенных напряжений, широко используется для чистых металлов. Здесь учитывается то, что когерентные атомные флуктуации способствуют приложенному напряжению продвигать дислокацию через препятствия [1]. Основные методики получения термоактивационных характеристик хорошо известны и подробно описаны в [2]. Одним из экспериментальных методов измерения энергии активации является метод, в котором используются данные двух типов опытов: это опыты по вариации скорости деформации [3] и опыты по вариации температуры [4].

Стандартная формула для расчета энергии активации, применяемая в данном методе:

$$U = kT^{2} \left(\frac{\Delta \ln \dot{\varepsilon}}{\Delta \tau_{1}}\right)_{T} \left(\frac{\Delta \tau_{2}}{\Delta T}\right)_{\dot{\varepsilon}}, \qquad (1)$$

где $\Delta \tau_1$ — скачок напряжений в результате изменения скорости деформации $\Delta \ln \dot{\epsilon}$ при неизменной температуре *T*, $\Delta \tau_2$ — скачок напряжений в ре-

зультате изменения температуры при неизменной скорости деформации *È*.

К сплавам со сверхструктурой $L1_2$, известных аномальной температурной зависимостью механических свойств, приемы термоактивационного анализа, разработанные для чистых металлов, неприменимы в силу специфических особенностей, возникающих при испытании в условиях вариации температуры и скорости деформации. В этом случае температура оказывает двоякое влияние на сопротивление движению дислокации. С одной стороны, когерентные атомные флуктуации способствуют приложенному напряжению продвигать дислокации через препятствия. С другой стороны, те же когерентные флуктуации способствуют самоблокировке сверхдислокаций. Возникает необходимость разделения механизмов, дающих аномальный и нормальный вклады в изменение различных характеристик пластической деформации. Как показано нами при анализе опытов по вариации скорости деформации и температуры в случае сплавов со сверхструктурой L1₂ такое разделение возможно [5-8].

Определение энергии активации механизмов, дающих нормальные вклады в изменение напряжений течения при вариации температуры и скорости деформации для интерметаллидов со сверхструктурой $L1_2$, затруднено. Связано это, прежде всего, с очень низкой скоростной чувствительностью предела текучести и напряжений течения в области температурной аномалии механических характеристик. Низкие значения скачка напря-

¹ Данная статья была представлена для опубликования в тематическом выпуске "Упорядочение в минералах и сплавах" (см. № 9 и № 11, том 84, 2020).

Рис. 1. Зависимость отношения величины нормальной составляющей скачка напряжений к величине изменения температуры ($\Delta \tau_{nor2} / \Delta T$) от деформирующего напряжения в монокристаллах Ni₃Ge: (*a*) ориентация [001], вариация температуры от 293 до 773 K; (*б*) ориентация [001], вариация температуры от 673 до 773 K; (*в*) ориентация [$\overline{2}$ 34], вариация температуры от 473 до 673 K.

жений при вариации скорости деформации (в некоторых случаях имеющие нулевые и отрицательные значения), измеряемые по стандартной методике, и аномальная температурная зависимость напряжений течения, приводят к невозможности определения энергии активации. Развиваемый в настоящей работе подход, в основе которого лежит идея необходимости разделения механизмов деформации на механизмы характерные для чистых металлов и механизмы специфические для сплавов со сверхструктурой $L1_2$, позволяет применить методы стандартного термоактивационного анализа к сплавам с положительной температурной зависимостью механических характеристик. Согласно этому подходу, для того чтобы получить значение энергии активации механизмов, дающих нормальные вклады в изменение напряжений течения в сплавах со сверхструктурой $L1_2$, формулу (1) необходимо модифицировать:

$$U = kT^{2} \left(\frac{\Delta \ln \dot{\varepsilon}}{\Delta \tau_{nor1}}\right)_{T} \left(\frac{\Delta \tau_{nor2}}{\Delta T}\right)_{\dot{\varepsilon}}, \qquad (2)$$

где $\Delta \tau_{norl}$ — доля нормальной составляющей скачка напряжений, полученной в результате вариации скорости деформации $\Delta \ln \dot{\epsilon}$ при неизменной температуре *T*, связанная с преодолением дислокационных стопоров $\Delta \tau_{norl}$ [5, 6], $\Delta \tau_{nor2}$ — нормальная составляющая скачка напряжений в результате изменения температуры на ΔT при неизменной скорости деформации $\dot{\epsilon}$ [7, 8].

МАТЕРИАЛЫ И МЕТОДЫ ЭКСПЕРИМЕНТА

Сплав состава 75 ат. % Ni и 25 ат. % Ge, выплавлен в печи сопротивления в вакууме из никеля марки H-0 и Ge высокой чистоты (99.999). Из полученного сплава в атмосфере очищенного аргона по методу Чохральского выращен монокристаллический слиток, из которого вырезались электроискровым методом образцы для сжатия, имеющие форму прямоугольного параллелепипеда, размером 3.0 × 3.0 × 6.0 мм³. Деформацию осуществляли путем одноосного сжатия монокристаллов сплава Ni₃Ge с осью деформации, совпадающей с направлениями [001] и [$\overline{2}$ 34].

ЭНЕРГИЯ АКТИВАЦИИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ МОНОКРИСТАЛЛОВ ОРИЕНТАЦИИ [001]

Выбор направления оси сжатия обуславливает разные механизмы скольжения дислокаций. При ориентации монокристалла вдоль оси [001] сжатие активирует октаэдрическое скольжение дислокаций. Оценим величины энергии активации механизмов, дающих нормальные вклады в изменение напряжений течения, для данной ориентации при разных температурах.

Температура 293 К

Для вычисления энергии активации механизмов, дающих нормальный вклад в изменение сдвиговых напряжений при температуре 293 К, использованы данные по вариации температуры деформации от комнатной к повышенным температурам [5, 6]. Было выяснено, что отношение

Рис. 2. Зависимость величины нормальной составляющей скачка напряжений от деформирующего напряжения в монокристаллах Ni₃Ge: (*a*) ориентация [001], вариация скорости деформации от $\dot{\epsilon}_1 = 5.5\%$ мин⁻¹ до $\dot{\epsilon}_2 = 0.4\%$ мин⁻¹, T = 293 K; (*b*) ориентация [001], вариация скорости деформации в 100 и в 500 раз ($\dot{\epsilon}_2 = 0.4\%$ мин⁻¹), T = 673 K; (*b*) ориентация [$\overline{2}$ 34], вариация скорости деформации от $\dot{\epsilon}_1 = 5.5\%$ мин⁻¹ до $\dot{\epsilon}_2 = 0.4\%$ мин⁻¹, T = 473 K.

нормальной составляющей скачка напряжений к изменению температуры ($\Delta \tau_{nor2}/\Delta T$) имеет одинаковые значения вне зависимости от величины скачка температуры ΔT и зависит только от напряжения. На графике, на рис. 1*а* видно, что экспериментальные значения $\Delta \tau_{nor2}/\Delta T$ связаны линейно с величиной деформирующего напряжения: $\Delta \tau_{nor2}/\Delta T = \text{tg}\alpha_2(\tau - \tau_0)$. Данные, полученные в опытах по вариации скорости деформации на монокристаллах Ni₃Ge ориентации [001] при комнатной температуре [7, 8], также были использованы для вычисления энергии активации.

Величина $\Delta \tau_{nor1}/\ln(\dot{\epsilon}_2/\dot{\epsilon}_1)$ зависит линейно от приложенного напряжения при комнатной температуре, как показано на рис. 2*a*:

$$\Delta \tau_{nor1} / \ln \dot{\epsilon}_2 / \dot{\epsilon}_1 = tg \alpha_1 (\tau - \tau_0).$$

Линейная зависимость величин $\Delta \tau_{nor1}/\ln(\dot{\epsilon}_2/\dot{\epsilon}_1)$ и $\frac{\Delta \tau_{nor2}}{\Delta T}$ от деформирующего напряжения означает независимость энергии активации от величины приложенных напряжений, которая может быть вычислена графически:

$$U = kT^{2} \frac{\mathrm{tg}\alpha_{2}}{\mathrm{tg}\alpha_{1}} = 1.38 \cdot 10^{-23} \cdot 293^{2} \cdot \frac{0.0013}{0.006} =$$
$$= (2.6 \pm 0.2) \cdot 10^{-19} \frac{\mathrm{\Xi}}{\mathrm{at.}} = (1.6 \pm 0.13) \ \mathrm{sB/at.}$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 12

Температура 673 К

Для определения энергии активации при температуре 673 К провели опыты по вариации температуры от 673 до 773 К. Была выделена нормальная составляющая скачка напряжений, соответствующая выбранной вариации. Полученная в результате зависимость $\Delta \tau_{nor2} / \Delta T$ от приложенного напряжения показана на рис. 16. Дополнив полученные данные результатами опытов по вариации скорости деформации при температуре 673 К (рис. 26), получили значение энергии активации:

$$U = kT^{2} \frac{\mathrm{tg}\alpha_{2}}{\mathrm{tg}\alpha_{1}} = 1.38 \cdot 10^{-23} \cdot 673^{2} \cdot \frac{0.002}{0.018} =$$

= (6.9 ± 0.8) \cdot 10^{-19} \frac{\Pi \pi \pi}{\pi \pi} = 4.3 ± 0.5 \cdot \beta \beta/\beta \text{.}

ЭНЕРГИЯ АКТИВАЦИИ ПЛАСТИЧЕСКОЙ ДЕФОРМАЦИИ МОНОКРИСТАЛЛОВ ОРИЕНТАЦИИ [234]

Для того чтобы получить значения энергии активации механизмов, дающих нормальные вклады в изменение напряжений течения в условиях кубического скольжения, использовали результаты опытов по вариации температуры деформации монокристаллов сплава Ni₃Ge ориентации [$\overline{2}$ 34] [6]. Из полного скачка напряжений, полученного в результате вариации температуры [6], выделена нормальная составляющая скачка напряжений, ее зависимость от приложенного напряжения

2020

приведена на рис. 1*в*. На рис. 2*в* приведены зависимости нормальной составляющей скачка напряжений при вариации скорости деформации для монокристаллов ориентации [234] при температуре 473 К. Используя эти данные, получили значения энергии активации для кубического скольжения для температуры 473 К:

$$U = kT^{2} \frac{\mathrm{tg}\alpha_{2}}{\mathrm{tg}\alpha_{1}} = 1.38 \cdot 10^{-23} \cdot 473^{2} \cdot \frac{0.001}{0.016} =$$

= (1.9 ± 0.2) \cdot 10^{-19} \frac{\Delta_{\text{x}}}{\mathrm{at.}} = 1.2 ± 0.12 \cdot B.

выводы

На основании подхода, основанного на разделении нормального и аномального отклика на изменение скорости или температуры деформации, получены величины эффективной энергии активации механизмов, связанных с нормальными вкладами в изменение напряжений течения при октаэдрическом и кубическом скольжении. Для октаэдрического скольжения (ориентация монокристаллов [001]): $U = 1.6 \pm 0.13$ эВ, при T = 293 К и $U = 4.3 \pm 0.5$ эВ, при T = 673 К. Для кубическо-

го скольжения (ориентация монокристаллов $[\overline{2}34]$): $U = 1.2 \pm 0.12$ эВ, при T = 473 К.

Работа выполнена в рамках государственного задания Министерства науки и высшего образования Российской Федерации (тема № FEMN-2020-0004).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Kocks U.F., Argon A.S., Ashby M.F.* Thermodynamics and kinetics of slip. Oxford, New York: Pergamon Press, 1975. 291 p.
- 2. *Орлов Н.А.* Термически активированные процессы в кристаллах. М.: Мир, 1973. 212 с.
- 3. Basinski Z.S. // Phil. Mag. 1959. V. 4. P. 393.
- Kottrell A.N., Stokes R.J. // Proc. Roy. Soc. A. 1955. V. 233. P. 17.
- 5. Соловьева Ю.В., Старенченко С.В. // Изв. вузов. Физ. 2014. Т. 57. № 2. С. 54.
- 6. Соловьева Ю.В., Старенченко С.В., Соловьёв А.Н. и др. // Изв. вузов. Физ. 2015. № 5. С. 58.
- Старенченко В.А., Соловьева Ю.В., Геттингер М.В., Ковалевская Т.А. // ФММ. 2005. Т. 100. № 4. С. 78.
- 8. Соловьева Ю.В., Геттингер М.В., Ковалевская Т.А., Старенченко В.А. // Деф. разр. мат. 2005. № 2. С. 20.