УДК 539.173.4

К МОДЕЛИРОВАНИЮ ^{nat}U + ²³²Th НЕЙТРОННОГО ИСТОЧНИКА НА ОСНОВЕ *d* + *t* НЕЙТРОННОГО ГЕНЕРАТОРА

© 2020 г. Ж. Хушвактов^{1, 2, *}, Б. Юлдашев¹, С. Артемов¹, М. Каюмов¹, Г. Кулабдуллаев¹, А. Караходжаев¹, Э. Бозоров¹, Г. Абдуллаева¹, О. Тожибоев¹, В. Татарчук¹, Ф. Эргашев¹, Э. Рузиев¹

¹Институт ядерной физики Академии наук Республики Узбекистан, Ташкент, Узбекистан ²Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия *E-mail: khushvaktov@jinr.ru

**L-mail: кhushvaktov@jinr.ru* Поступила в редакцию 15.07.2020 г. После доработки 10.08.2020 г. Принята к публикации 26.08.2020 г.

Моделирование методом Монте-Карло выполнено с использованием кода Geant4. Моделировались угловое распределение выхода нейтронов в реакции ${}^{3}H(d, n)^{4}$ Не на тритиевой мишени и влияние блок коллиматора на поток нейтронов. Также были определены числа всех каналов ядерных реакций в мишени 232 Th + nat U (50/50%) на один нейтрон с энергией 14.1 МэВ и оптимальный размер мишени для максимального выхода вторичных нейтронов.

DOI: 10.31857/S0367676520120194

ВВЕДЕНИЕ

Экспериментальное изучение различных аспектов ADS (accelerator driven system) на основе низкоэнергетических ускорителей — циклотронов, микротронов, а также ускорителей — генераторов нейтронов высокой интенсивности на основе (D + D) и (D + T) реакций имеет большое значение. Целесообразно, чтобы таким экспериментальным исследованиям предшествовали расчеты нейтронных спектров с использованием кодов MCNP [1], FLUKA [2] и Geant4 [3]. В данной работе представлены результаты моделирования источника нейтронов на основе генератора нейтронов D + T.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Моделирование выполнено кодом Geant4 с использованием пакетов моделей IonPhysicsPHP и NeutronHP (HP – High Precision). В расчетах были использованы следующие данные: соотношение числа атомов в титан – тритиевой нейтрон – образующей мишени составляет ³H/Ti = 1.5, а плотность ³H/Ti мишени составляет 4.22 г · см⁻³. Расчеты выполнены для пучка дейтронов с энергией 105 кэВ, поскольку сечение реакции ³H(*d*, *n*)⁴He в области энергий 90–120 кэВ практически не меняется (см. рис. 1). Результаты моделирования

нормированы на один дейтрон с энергией 105 кэВ, падающий на тритиевую мишень.

В результате расчетов были определены значения флюенса нейтронов в следующих трех позициях планируемой установки: а) на расстоянии 10 см от центра тритиевой мишени; б) за блоком коллимации (20 см Fe + 40 см парафин + 1 см Cd + 20 см Pb) на расстоянии 100 см от центра тритиевой мишени по оси коллиматора, где будет находиться исследуемая мишень; в) за блоком коллимации на расстоянии 20 см от его оси, где будет расположен детектор для измерения флю-

Рис. 1. Зависимость сечения σ реакции ³H(*d*, *n*)⁴He от энергии дейтрона E_d . Данные взяты из базы данных EXFOR [4].

Рис. 2. Энергетическая зависимость флюенса нейтронов *F* для следующих позиций: a – на расстоянии 10 см от центра тритиевой мишени (красные квадраты); δ – на расстоянии 100 см от центра тритиевой мишени по оси коллиматора (синие точки); e – за блоком коллиматора вне его оси (черные кружки).

Рис. 4. Энергетическая зависимость флюенса *F* 14.1-МэВных нейтронов, рассеянных ториевой мишенью на различные углы.

енса нейтронов. Зависимость флюенса от энергии нейтронов показана на рис. 2 для трех указанных выше позиций. Флюенс нейтронов на расстоянии 10 см от тритиевой мишени составляет $7.55 \cdot 10^{-6}$, а на расстоянии 100 см от центра тритиевой мишени, (место расположения исследуемой мишени) — $1.82 \cdot 10^{-8}$, а в области расположения детектора для измерения флюенса нейтронов — $1.99 \cdot 10^{-9}$ нейтрон \cdot см⁻² · дейтрон⁻¹. Результаты показывают, что флюенс уменьшается приблизительно на 90% при прохождении через коллиматор. Угловая зависимость выхода нейтронов была также определена для тритиевой мишени. Из рис. 3 видно, что нейтроны испускаются из тритиевой мишени практически изотропно.

Кроме того, были проведены расчеты для определения зависимости флюенса нейтронов с энергией 14.1 МэВ от угла рассеяния при падении на ториевую мишень толщиной 1 мм. Результаты показаны

Рис. 3. Энергетическая зависимость флюенса нейтронов F под разными углами от тритиевой мишени с учетом толщины молибденовой подложки 1 мм.

Рис. 5. Число нейтронов *N*, вылетающих с поверхности сферической ²³²Th + nat U (50/50%) мишени на один нейтрон с энергией 14.1 МэВ.

на рис. 4, и эти данные показывают, что 98.6% нейтронов проходят через исследуемую ториевую мишень без взаимодействия. Те же расчеты были выполнены для мишеней 232 Th + 233 U (50/50%) и 232 Th + nat U (50/50%), но результаты были аналогичны случаю с ториевой мишенью.

В результате моделирования также был определен оптимальный размер мишеней 232 Th + nat U (50/50%) из условия максимального количества вторичных нейтронов, вылетающих из мишени. В расчетах использовалась сферическая форма мишеней с каналами к центру для входа нейтронов с энергией 14.1 МэВ. Рисунок 5 показывает число нейтронов, уходящих с поверхности сферической мишени. Видно, что максимальное количество нейтронов вылетает из сферической мишени при ее радиусе ~15 см. Число всех каналов ядерных реакций в сферической мишени 232 Th + nat U (50/50%) радиусом 15 см на один нейтрон с энергией 14.1 МэВ

Ядерные реакции	Количество реакций	Ядерные реакции	Количество реакций
(<i>n</i> , <i>f</i>)	0.367(1)		
238 U(<i>n</i> , γ) ²³⁹ U	0.165(1)	232 Th $(n,\gamma)^{233}$ Th	0.220(1)
238 U(<i>n</i> ,2 <i>n</i>) 237 U	0.148(1)	232 Th $(n,2n)^{231}$ Th	0.235(1)
238 U(<i>n</i> ,3 <i>n</i>) 236 U	0.061(1)	232 Th $(n,3n)^{230}$ Th	0.090(1)
Общее число нейтронов в мишени (влетающих в мишень и образующихся в реакциях)			5.646(1)

Таблица 1. Число ядерных реакций в сферической мишени 232 Th + nat U (50/50%) радиусом 15 см на один нейтрон с энергией 14.1 МэВ

приведены в табл. 1. Также в табл. 1 приведено общее число нейтронов (влетающих в мишень и образующихся в реакциях). Из таблицы видно, что наибольшее количество нейтронов возникает в реакциях деления (n, f) ядер ²³⁸U, ²³²Th и ²³⁵U. Вероятности реакций (n, γ) , (n, 2n) и (n, 3n) на ядрах ²³²Th больше, чем на ядрах ²³⁸U, тогда как вероятность реакции деления тория меньше, чем ²³⁸U.

ЗАКЛЮЧЕНИЕ

Результаты моделирования показывают, что при падении дейтронов с энергией 105 кэВ на тритиевую мишень нейтроны с энергией ~14.1 МэВ испускаются из мишени практически изотропно. При прохождении нейтронов блок коллимации уменьшает общий поток нейтронов в 9.15 раз. При этом поток нейтронов с энергией 14.1 МэВ уменьшается в 201.4 раз на том же расстоянии от ³H/Ті мишени вне оси коллиматора. Зависимость флюенса нейтронов с энергией 14.1 МэВ от угла рассеяния на ториевой мишени показывает, что 98.6% нейтронов проходят через ториевую мишень толщиной 1 мм практически без взаимодействия. Согласно результатам нахождения оптимального размера мишени ²³²Th + ^{nat}U (50/50%) с учетом процессов образования и поглощения нейтронов, флюенс нейтронов, выходящих из сферической мишени максимален при ее радиусе ~15 см.

Работа выполнена при поддержке исследовательского проекта Института ядерной физики АН РУз на тему ФА-Атех-2018-166 "Разработка основ подкритичного реактора на базе нейтронного генератора НГ-150 ИЯФ АН РУз".

СПИСОК ЛИТЕРАТУРЫ

- 1. Werner C.J., Bull J.S., Solomon C.J. et al. // Los Alamos Nat. Lab. Report LA-UR-18-20808, 2018.
- Battistoni G., Boehlen T., Cerutti F. et al. // Ann. Nucl. Energy. 2015. V. 82. P. 10.
- 3. Allison J., Amako K., Apostolakis J. et al. // Nucl. Instrum. Meth. A. 2016. V. 835. P. 186.
- 4. Zerkin V.V., Pritychenko B. // Nucl. Instrum. Meth. A. 2018. V. 888. P. 31.