УДК 534.2,517.9

РАССЕЯНИЕ ЗАПАЗДЫВАЮЩИХ ВОЛНОВЫХ ПОЛЕЙ НА ТОЧЕЧНОЙ АКУСТИЧЕСКОЙ НЕОДНОРОДНОСТИ

© 2020 г. К. В. Дмитриев¹, Е. В. Фадеев¹, О. Д. Румянцева^{1, *}

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", физический факультет, Москва, Россия

> **E-mail: burov@phys.msu.ru* Поступила в редакцию 26.08.2019 г. После доработки 13.09.2019 г. Принята к публикации 28.10.2019 г.

Рассмотрено рассеяние монохроматической волны на неоднородности с малым волновым размером. Введены коэффициенты рассеяния, и получены множества их допустимых значений в отсутствие и в присутствии поглощения внутри неоднородности. Для различных значений коэффициентов рассеяния проанализировано решение обратной задачи рассеяния, с точки зрения адекватности результата восстановления и его устойчивости.

DOI: 10.31857/S036767652002009X

ВВЕДЕНИЕ

Распространение акустических волн в метаматериале можно рассматривать, с одной стороны, как процесс, протекающий в однородной среде с некоторыми эффективными параметрами. С другой стороны, тот же процесс может быть описан с точки зрения многократного рассеяния волн на всех элементах метаматериала. Представляет интерес тот случай, когда размер элемента метаматериала много меньше длины волны в нем (случай малого волнового размера) — именно тогда среду можно описывать с помощью эффективных параметров.

Одиночный элемент метаматериала в виде квазиточечной неоднородности с плотностью $\rho(\vec{z})$ и фазовой скоростью звука $c(\vec{z})$ интересен при решении как прямой, так и обратной задач рассеяния. Показано [1–3], что фаза и амплитуда поля, рассеянного такой неоднородностью, являются взаимозависимыми. Это накладывает ограничения на максимальную мощность рассеянного поля [4]. При решении обратной задачи рассеяния такая взаимосвязь позволяет не измерять фазу рассеянного поля – достаточно данных только об абсолютной величине амплитуды рассеяния [5].

Акустические поля, рассеянные неоднородностями плотности $\rho(\vec{z})$ и сжимаемости $\eta(\vec{z}) \equiv 1/(\rho(\vec{z})c^2(\vec{z}))$, можно разложить в ряд, каждый член которого соответствует определенному порядку мультипольности (т.е. определенному характеру угловой зависимости поля). В случае

одиночной квазиточечной неоднородности, линейный размер которой много меньше длины волны, при описании оказывается возможным ограничиться монопольным и дипольным порядками мультипольности [3], за исключением узких диапазонов значений характеристик рассеивателя, когда возникают резонансы.

Если среда в присутствии рассеивателя однородна по плотности, то может быть достаточно только одного монопольного члена [1]. Именно такой случай рассматривается ниже. Пусть первичные источники создают в фоновой (когда рассеиватель отсутствует) однородной непоглощаю-

щей среде падающее акустическое поле $u_0^{\pm}(\vec{z})$. Верхними индексами "+" и "–" здесь и далее обозначаются величины, относящиеся к запаздывающему полю, расходящемуся на бесконечности и удовлетворяющему принципу излучения Зоммерфельда, и опережающему полю, сходящемуся с бесконечности и не удовлетворяющему принципу излучения Зоммерфельда, соответственно. Тогда в присутствии в области \Re рассеивателя в виде квазиточечной неоднородности с центром в точке

 \vec{r}_0 полное акустическое поле $u^{\pm}(\vec{z})$ в произвольной точке \vec{z} подчиняется уравнению Липпмана—Швингера:

$$u^{\pm}(\vec{z}) = u_0^{\pm}(\vec{z}) + \int_{\Re} G_0^{\pm}(\vec{z} - \vec{r}) v(\vec{r}) u^{\pm}(\vec{r}) d\vec{r}.$$
(1)

Здесь G_0^+ и G_0^- – запаздывающая и опережающая функции Грина однородной фоновой среды, ана-

Рис. 1. Допустимые значения коэффициента рассеяния β^+ на комплексной плоскости для монопольной квазиточечной неоднородности. В отсутствие поглощения (*a*) семейство I значений β^+ изображено пунктирной линией; семейство II — линией, составленной из точек. В случае неоднородности с поглощением возможные значения β^+ изображены тонкой сплошной линией при фиксированном $k'_1 R$ (*b*) или $k_0 R$ (*b*).

литический вид которых хорошо известен; функция рассеивателя задается в виде

$$v(\vec{r}) = k_0^2 - k_1^2(\vec{r});$$
⁽²⁾

 k_0 и $k_1(\vec{r})$ – волновые числа, соответственно, вне (т.е. в фоновой среде) и внутри рассеивателя. Поскольку неоднородность является квазиточечной, и предполагается, что рассеянное ею поле $u_{sc}^{\pm}(\vec{z}) \equiv u^{\pm}(\vec{z}) - u_0^{\pm}(\vec{z})$ имеет только монопольную компоненту, выражение (1) можно упростить. Для этого вводятся комплексные коэффициенты рассеяния β^+ и β^- так, чтобы было справедливо соотношение $v(\vec{r})u^{\pm}(\vec{r}) = \beta^{\pm}\delta(\vec{r} - \vec{r}_0)u_0^{\pm}(\vec{r})$ [1, 2], откуда

$$u^{\pm}(\vec{z}) = u_0^{\pm}(\vec{z}) + G_0^{\pm}(\vec{z} - \vec{r}_0)\beta^{\pm}u_0^{\pm}(\vec{r}_0).$$
(3)

Отличие выражения (3) от уравнения Липпмана—Швингера (1) состоит в том, что в правой части (3) не содержится неизвестное поле внутри рассеивателя $u^{\pm}(\vec{r}_0)$. Процессы многократного рассеяния учитываются при этом с помощью коэффициентов β^{\pm} , которые зависят от параметров рассеивателя, но не явно, и для определения значений β^{\pm} необходимо, в общем случае, выполнить расчеты для заданной функции $v(\vec{r})$. Эти коэффициенты подчиняются соотношению

$$\frac{1}{\beta^{-}} - \frac{1}{\beta^{+}} = -\frac{i}{2};$$
 (4)

здесь и далее рассматривается двумерный случай при временно́й зависимости как запаздывающих, так и опережающих полей $\sim \exp(-i\omega t)$.

НЕПОГЛОЩАЮЩИЙ РАССЕИВАТЕЛЬ

В отсутствие поглощения β^+ и β^- являются комплексно сопряженными: $\beta^{\pm} = |\beta| \exp(\pm i \phi)$, где $|\beta|$ и $\pm \phi$ — модуль (амплитуда) и фаза коэффициентов рассеяния. Тогда из (4) следует, что между амплитудой и фазой имеет место связь [1]:

$$|\beta| = -4\sin\phi. \tag{5}$$

Геометрическое место точек на комплексной плоскости, соответствующих допустимым значениям (5) комплексного коэффициента рассеяния β^+ для запаздывающего поля, представляет собой окружность, проходящую через начало координат *O* и имеющую центр в точке *C* с координатами (0; -2) (рис. 1*a*). В этой точке *O* будет $\beta^+ = 0$, что означает отсутствие рассеянного поля $u_{sc}^{\pm}(\vec{z})$. Тогда $|\beta| = 0$, $\phi = \pi n$, где $n \in \mathbb{Z}$; причем случай $\phi = 0$ означает отсутствие рассеивателя, а случай $\phi = \pi n$ при $n \neq 0$ соответствует сильным рассеивателям, которые, однако, не создают рассеянного наружу поля.

Одинаковая амплитуда коэффициента рассеяния $|\beta|$ достигается в двух различных точках окружности (например, точки $N_{\rm I}$ и $N_{\rm II}$ на рис. 1*a*). Поэтому вводятся два семейства рассеивателей: для семейства I выбирается решение уравнения (5) относительно ϕ в виде $\phi_{I} = \arcsin(-|\beta|/4) + 2\pi n$; для семейства II — в виде $\phi_{II} = \pi - \arcsin(-|\beta|/4) + 2\pi n$, где $n \in \mathbb{Z}$. На рис. 1*а* этим семействам I и II соответствуют правая и левая половины окружности. Максимальная амплитуда коэффициента рассеяния $|\beta| = 4$ достигается в точке *M* (рис. 1*a*) при $\phi = 3\pi/2 + 2\pi n, n \in \mathbb{Z}$.

Представляет интерес обратная задача – восстановление характеристик рассеивателя по проведенным измерениям (вне рассеивателя, т.е. при \vec{z} ∉ ℜ) рассеянного им поля $u_{sc}^{\pm}(\vec{z})$. Слабые квазиточечные рассеиватели, которые слабо искажают падающее на них поле, обладают близкой к нулевой амплитудой |β| и фазой, близкой к 0 для семейства I, и близкой к π для семейства II. При этом коэффициент рассеяния β^+ лежит вблизи точки О. Именно такое скачкообразное изменение фазы на π обуславливает, с физической точки зрения, деление рассеивателей на два семейства. Слабые рассеиватели должны восстанавливаться хорошо. Квазиточечные рассеиватели с коэффициентом β^+ , лежащим вблизи точки M, являются, наоборот, очень сильными (сильно искажают падающее поле); как следствие, их восстановление в монохроматическом режиме сталкивается с проблемами неединственности и неустойчивости [6]. Вообще, к сильным относятся и другие рассеиватели — с меньшим $|\beta|$, но $|\phi| > 2\pi$. С другой стороны, на первый взгляд кажется, что рассеиватели семейств I и II с одинаковой амплитудой | в соответствующей фазой $\phi_{I} = -\arcsin(|\beta|/4)$ и $\phi_{II} = \pi + \arcsin(|\beta|/4)$ должны иметь близкую силу и, тем самым, восстанавливаться с примерно одинаковым качеством. Однако это не так, и данная ситуация будет обсуждаться ниже.

Для слабых рассеивателей можно применить в исходном уравнении Липпмана–Швингера (1) борновское приближение $u^{\pm}(\vec{r}) \approx u_0^{\pm}(\vec{r})$ и, тем самым, с учетом (3), получить оценку $\beta^+ \approx \int_{\Re} v(\vec{r}) d\vec{r} =$ $= \int_{\Re} (k_0^2 - k_1^2(\vec{r})) d\vec{r} \approx \pi R^2 (k_0^2 - k_{1avg}^2)$. Здесь *R* и k_{1avg} – характерный радиус неоднородности и среднее волновое число внутри нее. Если скорость звука внутри рассеивателя больше фоновой (рассеиватель дефокусирующий), то $k_{1avg} < k_0$ и получается $\beta^+ > 0$ – рассеиватель относится к семейству I. Аналогично, если скорость звука внутри рассеивателя меньше фоновой (рассеиватель

фокусирующий), то $k_{1avg} > k_0$ и $\beta^+ < 0$ — рассеиватель относится к семейству II. Меньшая, по сравнению с фоновой, скорость звука приводит к концентрации поля внутри рассеивателя, фокусировке поля, что увеличивает силу рассеивателя. Наоборот, бо́льшая скорость звука приводит к дефокусировке поля и, тем самым, уменьшает силу рассеивателя. Поэтому для одного и того же значения $|\beta|$ рассеиватели семейства II при $\phi_{II} = \pi + \arcsin(|\beta|/4)$ оказываются более сильными, чем рассеиватели семейства I при $\phi_I = -\arcsin(|\beta|/4)$, и восстановление рассеивателей семейства II более проблематично. Чем больше фиксированное значение $|\beta|$, тем больше различие по силе между соответствующей парой рассеивателей из семейств I и II.

Возможен подход к анализу рассеянного неоднородностью поля с точки зрения значения дополнительного набега фазы $\Delta \psi$, который создает неоднородность для распространяющегося через нее поля. Этот дополнительный набег при распространении волны вдоль центрального сечения неоднородности оценивается как

$$\Delta \Psi = \int_{-R}^{R} \left(k(\vec{r}) - k_0 \right) dl_{\vec{r}} \approx 2R \left(k_{1 \operatorname{avg}} - k_0 \right), \qquad (6)$$

где $dl_{\vec{r}}$ — длина элемента траектории в окрестности точки \vec{r} . Для дальнейшего рассмотрения важно уточнить понятие "малый волновой размер" неоднородности, поскольку такой размер можно задать двумя различными способами. Так, "внутренний" волновой размер $2k_{1avg}R$ связан с длиной волны внутри неоднородности. "Внешний" волновой размер $2k_0R$ связан с длиной волны в фоновой среде, окружающей неоднородность.

Когда $k_{1 \text{avg}} \ll k_0$, т.е. рассеиватель относится к семейству I, из (6) вытекает $\Delta \psi \approx -2k_0 R$. Тогда, если фиксировать "внешний" волновой размер неоднородности или даже рассматривать область его малых значений $k_0 R \ll 1$, то будет $|\Delta \psi| \ll 1$ – не удается получить все допустимые значения набега фазы, которые характерны для семейства I. Таким образом, при рассмотрении семейства I целесообразно фиксировать малое значение именно "внутреннего" волнового размера неоднородности

$$2k_{1avg}R \ll 1$$
 и варьировать $\frac{k_0}{k_{1avg}} > 1$ (т.е. $\frac{k_{1avg}}{k_0} < 1$).

Когда, напротив, $k_{1avg} \ge k_0$, т.е. рассеиватель относится к семейству II, будет $\Delta \psi \approx 2k_{1avg}R$. В этом случае, чтобы иметь возможность получить все значения $\Delta \psi$, характерные для семейства II, РАССЕЯНИЕ ЗАПАЗДЫВАЮЩИХ ВОЛНОВЫХ ПОЛЕЙ

следует фиксировать малое значение "внешнего" волнового размера неоднородности $2k_0 R \ll 1$ и ва-

рьировать
$$\frac{\kappa_{1 \text{avg}}}{k_0} > 1.$$

Вопросы, связанные с восстановлением непоглошающих рассеивателей семейства I, исследовались в [7]. В [8] приведены результаты восстановления непоглощающих рассеивателей обоих семейств с помощью двумерного алгоритма Новикова [9–11] в монохроматическом режиме, однако без обсуждения физических причин, приводящих к различию качества восстановления. В [8] показано, что при фазе $\phi_{II} = 235.5^{\circ}$ (точка N_{II} на рис. 1a, достаточно далекая от точки M) восстановленная оценка $\hat{v}(\vec{r})$ рассеивателя семейства II представляет собой узкий пик (с шириной $\simeq \lambda_0 / 12$ по уровню 0.7, где λ_0 – длина волны в фоновой среде) с большой амплитудой, причем отрицательной ($\hat{v} < 0$). При незначительном увеличении фазы до $\phi_{\rm H} = 237.0^{\circ}$ амплитуда пика увеличивается примерно в три раза. При этом ширина пика сужается до $\cong \lambda_0/20$, что гораздо меньше разрешающей способности двумерного алгоритма Новикова, близкой к $\lambda_0/3$ [12]. Тем самым, полученная оценка рассеивателя не может считаться достоверной. Как показало исследование, причиной ошибки в оценке служит помеха, которая вызвана присутствием существенного рассеяния назад [13], создаваемого квазиточечными рассеивателями, в сочетании с большой силой рассматриваемых рассеивателей семейства II. Негативный фактор в виде помехи такого рода является общим для всех алгоритмов решения обратных задач рассеяния. Уменьшить, в той или иной мере, влияние данной помехи можно, если ввести угловую фильтрацию данных рассеяния. Для этого обобщенная амплитуда рассеяния $h(\phi, \phi')$, вычисляемая из экспериментальных данных на одном из этапов алгоритма Новикова, умножается на функцию фильтра $F(|\varphi - \varphi'|)$, т.е. $h_{filtr}(\varphi, \varphi') =$ $h(\phi, \phi') F(|\phi - \phi'|)$, где ϕ – угол падения эффективной плоской волны на рассеиватель; ф' – угол приема соответствующей рассеянной волны в дальней зоне. Функция фильтра ослабляет вклад рассеяния назад за счет того, что $F(|\phi - \phi'|) \rightarrow 0$ при $|\phi - \phi'| \rightarrow \pi$. Применение такой фильтрации позволяет улучшать результат восстановления рассеивателей средней силы и сильных. В частности, существенно ослабляются заведомо ложные компоненты пространственного спектра восстановленной оценки $\hat{v}(\vec{r})$, лежащие вне круга радиуса $2k_0$. Кроме того, улучшается обусловленность систем уравнений, решаемых при восстановлении, и, как следствие, улучшается устойчивость оценки $\hat{v}(\vec{r})$. При этом вышеупомянутые оценки в виде нефизически узких пиков расширяются.

В то же время, при восстановлении рассеивателей семейства I амплитудное значение оценки $\hat{v}(\vec{r})$ положительно [7, 8], и в [8] был отмечен следующий эффект. Когда амплитуда коэффициента рассеяния || приближается к максимально допустимой (например, рассеиватель с $|\beta| = 3.99985$, $\phi_{\rm I} = -89.50^\circ$), амплитудное значение оценки $\hat{v}(\vec{r})$ оказывается больше, чем k_0^2 . Поскольку, согласно (2), $v(\vec{r}) = k_0^2 - k_1^2$, то в [8] говорится, что результат $\hat{v} > k_0^2$ означает, что $k_1^2 < 0$, т.е. рассеиватель не может интерпретироваться как непоглощающий рефракционный рассеиватель. Однако применение на этапе восстановления $\hat{v}(\vec{r})$ вышеупомянутого углового фильтра $F(|\phi - \phi'|)$ показало, что значение $\hat{v} > k_0^2$ в отсутствие фильтрации обусловлено не особыми физическими свойствами рассеивателя, а, как и для рассеивателей семейства II, помехой в виде сильного рассеяния назад в сочетании с сильно выраженными эффектами многократного рассеяния волновых полей.

Соотношение (5) справедливо в отсутствие поглощения как в фоновой среде, так и внутри неоднородности. В квантовой механике существуют похожие соотношения (оптическая теорема), которые также остаются справедливыми при отсутствии захвата частиц рассеивающим центром. Однако на практике акустические рассеиватели часто обладают поглощением, и, тем самым, встает вопрос о видоизменении соотношения (5) и геометрического места точек на комплексной плоскости, описывающего возможные значения

 $\beta^{\scriptscriptstyle +}$ в этом случае. Соотношение связи (4) между $\beta^{\scriptscriptstyle +}$

и β^- для монопольного квазиточечного рассеивателя в присутствии поглощения остается без изменений, позволяя, при необходимости, найти β^-

из β⁺.

Для анализа этих видоизменений рассматривалась двумерная задача рассеяния падающей акустической волны круглым однородным цилиндром; такая задача имеет точное аналитическое решение [14]. Волновое число внутри цилиндра задавалось как $k_1 = k'_1 + ik''_1$, где действительная часть $k'_1 = \omega/c_1$ связана со скоростью звука в цилиндре c_1 , а мнимая часть k''_1 соответствует амплитудному коэффициенту поглощения цилиндра. Радиус цилиндра $R \to 0$. Если при этом k_0 = const и k_1 = const, то получается, что набег фазы, рассчитанный согласно (6) как $\Delta \psi = 2R(k_1 - k_0)$, будет очень мал: $\Delta \psi \to 0$ (тогда и $\beta^+ \to 0$), и рассеиватель является очень слабым. Более интересны результаты, которые можно получить (как в отсутствие поглощения, так и в его присутствии), если при уменьшении радиуса цилиндра фиксировать, в одном случае, $k_1'R$, а в другом k_0R . Тогда можно рассматривать коэффициент рассеяния β^+ как функцию от k_1'/k_0 . Одновременно необходимо контролировать рассеянное поле на предмет наличия дипольной, квадрупольной и высших компонент мультипольности, поскольку в случае присутствия таких компонент единственного коэффициента β^+ , ответственного за монопольное рассеяние, недостаточно, и требуется уточнение математического аппарата [2, 3].

В первом случае в отсутствие поглощения $(k_1'' = 0)$ фиксировалось $k_1 R = \text{const.}$ При $k_1 \ge k_0$ рассеяние монопольное, но коэффициент рассеяния $\beta^+ \approx 0$ (ближайшая левая окрестность точки *О* на рис. 1*a*); рассеиватель оказывается очень слабым. При уменьшении k_1 ($k_1 < k_0$) амплитуда коэффициента рассеяния || растет, а точка, изображающая значение β^+ на рис. 1*a*, двигается по окружности по часовой стрелке, что соответствует значениям β⁺ семейства І. Однако, начиная с некоторого значения k_1 (например, $k_1 \approx 0.1 k_0$ при $k_1 R = 2\pi/128$; соответствующий коэффициент рассеяния имеет $|\beta| = 0.6238$, $\phi \equiv \phi_I = -8.97^\circ$) и меньших значениях k_1 , оказывается существенным рассеяние высших порядков мультипольности; поэтому рассматриваемая модель чисто монопольного рассеяния становится неправомерной. Таким образом, семейство I значений β^+ даже для интервала $-\pi/2 \le \phi_I \le 0$ описывается цилиндрическими рассеивателями не полностью.

Во втором случае в отсутствие поглощения фиксировалось $k_0 R = \text{const.}$ При $k_1 \le k_0$ рассеяние монопольное, но $\beta^+ \approx 0$ (ближайшая правая окрестность точки *O* на рис. 1*a*). С ростом k_1 $(k_1 > k_0)$ амплитуда коэффициента рассеяния $|\beta|$ растет, а точка, изображающая значение β^+ на рис. 1*a*, двигается по окружности против часовой стрелки. Эта точка пробегает целиком значения β^+ семейства II и (например, начиная с $k_1 \approx 15.7k_0$ при $k_0 R = 2\pi/128$) часть значений β^+ семейства I. При дальнейшем росте k_1 ($k_1 > 48.9k_0$ при $k_0 R = 2\pi/128$) возникает заметное рассеяние дипольного и квадрупольного порядков.

РАССЕИВАТЕЛЬ С ПОГЛОЩЕНИЕМ

Наличие поглощения $(k_1'' \neq 0)$ приводит к тому, что коэффициент β^+ перестает лежать на окружности. В первом случае фиксировалось $k_1 R = 2\pi/128$, и варьировалась действительная часть k_1' волнового числа $k_1 = k_1' + 0.5ik_0$ (т.е. здесь $k_1''/k_0 = 0.5$). Геометрическое место точек, изображающих коэффициент β^+ при $k_0 / k_1 \in [1; +\infty)$, представляет собой сложную кривую (рис. 16; в том числе, выноска на рис. 16, показывающая фрагмент в увеличенном масштабе). Эта кривая сосредоточена, однако, возле изначальной окружности, т.е. окружности в отсутствие поглощения (на рис. 16 и 1в правая половина этой окружности по-прежнему изображена пунктирной линией, левая половина - линией, составленной из точек, как на рис. 1а). Подобная ситуация практически не изменяется при задании других значений k_1''/k_0 .

Во втором случае при фиксированном $k_0R = 2\pi/128$ варьировалась действительная часть k'_1 волнового числа $k_1 = k'_1 + 0.15ik_0$, т.е. поглощение на расстоянии, равном линейному размеру цилиндра, было фиксированным ($k''_1R = 0.15k_0R$ фиксировано в силу фиксирования k_0R). Тогда точка, изображающая коэффициент β^+ , двигается при $k'/k_0 \in [1; +\infty)$ по скручивающейся спирали (рис. 1*в*) с полюсом в точке $\approx 1.64 - 0.85i$ (это значение зависит только от значения $k_0R = 2\pi/128$).

Таким образом, монопольные рассеиватели малого волнового размера могут описываться единственным коэффициентом рассеяния β^+ . Возможные значения этого коэффициента на комплексной плоскости лежат внутри круга, а в отсутствие поглощения — на его границе.

Исследование выполнено за счет гранта Российского научного фонда № 19-12-00098.

СПИСОК ЛИТЕРАТУРЫ

- Буров В.А., Морозов С.А. // Акуст. журн. 2001. Т. 47. № 6. С. 751; Burov V.A., Morozov S.A. // Acoust. Phys. 2001. V. 47. № 6. Р. 659.
- 2. Дмитриев К.В. // Акуст. журн. 2015. Т. 61. № 6. С. 656; Dmitriev K.V. // Acoust. Phys. 2015. V. 61. № 6. Р. 623.
- 3. Дмитриев К.В. // Акуст. журн. 2018. Т. 64. № 2. С. 125; Dmitriev K.V. // Acoust. Phys. 2018. V. 64. № 2. Р. 131.
- 4. Дмитриев К.В. // Изв. РАН. Сер. физ. 2015. Т. 79. № 12. С. 1700; Dmitriev K.V. // Bull. Russ. Acad. Sci. Physics. 2015. V. 79. № 12. Р. 1488.
- 5. *Novikov R.G.* // Euras. J. Math. Comp. Appl. 2018. V. 6. № 1. P. 52.

- Буров В.А., Румянцева О.Д. // Акуст. журн. 2003. Т. 49. № 5. С. 590; Burov V.A., Rumyantseva O.D. // Acoust. Phys. 2003. V. 49. № 5. Р. 496.
- 7. Бадалян Н.П., Буров В.А., Морозов С.А., Румянцева О.Д. // Акуст. журн. 2009. Т. 55. № 1. С. 3; Badalyan N.P., Burov V.A., Morozov S.A., Rumyantseva O.D. // Acoust. Phys. 2009. V. 55. № 1. Р. 1.
- 8. https://hal.archives-ouvertes.fr/hal-01570494.
- 9. Novikov R.G. // Phys. Lett. A. 1998. V. 238. № 2–3. P. 73.
- 10. *Новиков Р.Г.* // Тр. Матем. инст. им. В.А. Стеклова. Солитоны, геометрия, топология — на перекрестках. 1999. Т. 225. С. 301; *Novikov R.G.* // Proc. V.A. Steklov Inst. Math. 1999. № 2(225). Р. 285.
- 11. Буров В.А., Алексеенко Н.В., Румянцева О.Д. // Акуст. журн. 2009. Т. 55. № 6. С. 784; Вигоv V.А.,

Alekseenko N.V., Rumyantseva O.D. // Acoust. Phys. 2009. V. 55. № 6. P. 843.

- Буров В.А., Гришина И.М., Лапшенкина О.И. и др. // Акуст. журн. 2003. Т. 49. № 6. С. 738; Burov V.A., Grishina I.M., Lapshenkina O.I. et al. // Acoust. Phys. 2003. V. 49. № 6. Р. 627.
- 13. Буров В.А., Вечерин С.Н., Морозов С.А., Румянцева О.Д. // Акуст. журн. 2010. Т. 56. № 4. С. 516; Виrov V.A., Vecherin S.N., Morozov S.A., Rumyantseva O.D. // Acoust. Phys. 2010. V. 56. № 4. Р. 541.
- 14. Бабич В.М., Капилевич М.Б., Михлин С.Г. и др. Линейные уравнения математической физики. Справочная математическая библиотека. М.: Наука, 1964. 368 с.