УДК 535.36,534.23

ОЦЕНКА ПАРАМЕТРОВ АКУСТООПТИЧЕСКИХ УСТРОЙСТВ НА ОСНОВЕ МОНОКРИСТАЛЛОВ ДЛЯ УПРАВЛЕНИЯ ТЕРАГЕРЦЕВЫМ ИЗЛУЧЕНИЕМ

© 2020 г. П. А. Никитин^{1, 2, *}

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия ²Федеральное государственное бюджетное учреждение науки

"Научно-технологический центр уникального приборостроения Российской академии наук", Москва, Россия

*E-mail: nikitin.pavel.a@gmail.com

Поступила в редакцию 26.08.2019 г. После доработки 13.09.2019 г. Принята к публикации 28.10.2019 г.

В работе систематизированы акустические и оптические свойства ряда монокристаллов, прозрачных в терагерцевом диапазоне. Рассчитано акустооптическое (AO) качество для квазиортогональной и коллинеарной геометрии AO-взаимодействия. Определены параметры AO-дефлекторов и фильтров ТГц излучения.

DOI: 10.31857/S0367676520020283

введение

Акустооптические (АО) устройства широко используются для управления электромагнитным излучением в видимом, инфракрасном и ультрафиолетовом диапазонах [1]. В последние годы интенсивно осваивается терагерцевый (ТГц) лиапазон, которому соответствует излучение с длинами волн от 30 до 300 мкм. Для управления мощным лазерным ТГц излучением используются, как правило, стационарные металлические и кремниевые дифракционные элементы [2]. Таким образом, АО-эффект может быть использован для создания быстродействующих устройств обработки информации ТГц диапазона. Целью данной работы является выбор монокристаллических сред, наиболее пригодных для создания АО-устройств, работающих с ТГц излучением.

Определяющими факторами при выборе материала AO-ячейки являются коэффициент AO-качества M_2 , а также прозрачность. Ниже приведены материалы, которые используются в том или ином спектральном диапазоне:

1) ультрафиолетовый диапазон: SiO₂, MgF₂, KDP, TeO₂;

2) видимый диапазон: CaMoO₄, LiNbO₃, TeO₂;

3) ближний инфракрасный (ИК) диапазон: TeO₂;

4) средний ИК-диапазон: Ge, Hg₂Cl₂, Hg₂Br₂, Tl₃AsSe₃, Te.

Как известно, в ТГц диапазоне многие среды имеют сильные линии поглощения [3]. В то же время для получения приемлемых значений эффективности дифракции длина области АО-взаимолействия лолжна составлять величину ок. 1 см. Поэтому целесообразно использовать только относительно прозрачные среды с показателем поглощения излучения $\alpha = 4\pi k/\lambda$ не более 5 см⁻¹, где *k* – мнимая часть показателя преломления. Зависимости n и k от длины волны λ для широкого круга монокристаллических сред систематизированы в справочнике под редакцией Палика [4]. Из этих сред были выбраны только те, у которых α < 5 см⁻¹. Установлено, что указанному критерию прозрачности не удовлетворяют двулучепреломляющие кристаллы, а также кристаллы с пьезоэлектрическими свойствами. Поэтому пока не представляется возможным осуществить обработку АО-изображений в ТГц диапазоне или пространственное сканирование лазерного луча, характеризующееся большим числом разрешимых элементов. Кроме того, АО-устройства управления ТГц излучением должны быть снабжены излучателем звука, в то время как, например, в АОустройствах для видимого диапазона используется генерация объемной звуковой волны с поверхности пьезоэлектрического кристалла ниобата лития (LiNbO₃).

В табл. 1 впервые систематизированы акустические, фотоупругие и оптические свойства монокристаллических сред в ТГц диапазоне: 1) дей-

Кристалл	п	k, 10 ⁻³	$lpha$, см $^{-1}$	р ₁₁ р ₁₂ р ₄₄	ρ, г · см ⁻³	$c_{11},$ $c_{12},$ $c_{44},$ $10^{11} \text{ H} \cdot \text{m}^{-2}$	<i>V_L</i> [111], км ∙ с ^{−1}	<i>V_L</i> [100], км · с ^{−1}
GaSb	3.997 [4]	0.720 [4]	0.9	0.434 [6] 0.467 [6] -0.062 [6]	5.614 [8]	0.884 [8] 0.404 [8] 0.435 [8]	4.51	3.97
AlSb	3.370 [4]	2.000 [4]	2.5	0.300 [6] 0.400 [6] -0.067 [6]	4.360 [7]	0.883 [7] 0.402 [7] 0.432 [7]	5.11	4.50
Ge	4.007 [4]	_	2.3 [5]	-0.151 [7] -0.128 [7] -0.072 [7]	5.313 [7]	1.284 [7] 0.482 [7] 0.667 [7]	5.55	4.92
GaAs	3.650 [4]	3.600 [4]	4.5	-0.160 [8] -0.130 [8] -0.050 [8]	5.317 [8]	1.181 [8] 0.536 [8] 0.594 [8]	5.39	4.71
Si	3.419 [4]	0.290 [4]	0.36	-0.094 [8] 0.017 [8] -0.151 [8]	2.329 [8]	1.652 [8] 0.631 [8] 0.792 [8]	9.33	8.42
GaP	3.365 [4]	3.364 [4]	4.2	-0.151 [7] -0.082 [7] -0.074 [7]	4.130 [7]	1.412 [7] 0.625 [7] 0.705 [7]	6.65	5.85

Таблица 1. Оптические, фотоупругие и акустические свойства монокристаллов

ствительная *n* и мнимая *k* части показателя преломления при $\lambda = 100$ мкм; 2) плотность ρ ; 3) упругие постоянные c_{11} , c_{12} и c_{44} ; 4) фотоупругие постоянные p_{11} , p_{12} и p_{44} для инфракрасного диапазона. Предполагалось, что интенсивность электромагнитной волны *I* и мощность акустической волны P_a экспоненциально затухают с пройденным в среде расстоянием *l*:

$$I \propto \exp(-\alpha l); P_a \propto \exp(-\alpha_s l).$$
 (1)

Как известно, наибольшие значения коэффициента АО-качества $M_2 = p_{eff}^2 n^6 / \rho V^3$ соответствуют продольным звуковым волнам, распространяющимся вдоль кристаллографических осей [111] и [100]. Это связано с тем, что АО-качество материала пропорционально квадрату эффективной фотоупругой постоянной p_{eff} , максимальное значение которой соответствует указанным направлениям распространения звуковых волн:

$$M_2 = \frac{p_{eff}^2 n^6}{0 V^3}.$$
 (2)

Поэтому акустические свойства монокристаллов были дополнены значениями скоростей $V_{L[111]}$ и $V_{L[100]}$ продольных звуковых волн, распростра-

няющихся вдоль кристаллографических осей [111] и [100] соответственно (см. [9]):

$$V_{L[100]} = \sqrt{\frac{c_{11}}{\rho}}; \quad V_{L[111]} = \sqrt{\frac{c_{11} + 2c_{12} + 4c_{44}}{3\rho}}.$$
 (3)

Рассмотренные кристаллические среды характеризуются значениями скорости звука около $V \approx$ ≈ 5 км \cdot с⁻¹ и плотности ≈5 г \cdot см⁻³. Показатель преломления кристаллов в ТГц диапазоне варьируется в диапазоне n = 3-4, а наиболее прозрачными являются кремний (Si) и антимонид галлия (GaSb). Низкие значения α показателя поглошения излучения антимонида галлия обусловлены тем, что они были измерены при температуре жидкого гелия, в то время как значения α для остальных кристаллов были определены при комнатных температурах. Следует отметить, что с понижением температуры полупроводниковые кристаллы, как правило, становятся более прозрачными. Поэтому, строго говоря, нельзя провести сравнение АО-свойств антимонида галлия и остальных кристаллов. Тем не менее, следует обратить внимание на этот монокристалл, так как он имеет рекордно высокое AO-качество M_2 , сравнимое с AO-качеством парателлурита (ТеО₂).

Выделяют два основных режима работы АОустройств: 1) квазиортогональная геометрия АО-взаимодействия, когда угол отклонения дифрагированного излучения мал и можно считать, что волновые векторы излучения нулевого и первого дифракционных порядков практически ортогональны волновому вектору звука; 2) коллинеарная геометрия, при которой волновые векторы взаимодействующих волн параллельны. Поскольку рассмотренные кристаллы являются оптически изотропными, при коллинеарной геометрии взаимодействия волновой вектор звука должен быть в 2 раза больше волнового вектора излучения. В этом случае дифрагированное излучение распространяется навстречу падающему на АО-ячейку излучению, а для описания данного явления используется термин "обратная" коллинеарная дифракция.

Поскольку эффективность I_1/I_0 АО-дифракции обратно пропорциональна квадрату длины волны излучения λ , то в ТГц диапазоне характерные значения I_1/I_0 составляют доли процента. Этот факт позволил использовать аналитические зависимости для оптимальной длины АО-взаимодействия L_{opt} и эффективности дифракции I_1/I_0 , полученные в приближении заданного поля в работах [10, 11]:

1) при квазиортогональной геометрии:

$$L = L_{opt} = \frac{1}{\alpha}; \ \frac{I_1}{I_0} = \frac{\pi^2}{2\lambda^2} \frac{M_2 P_a}{d} L \exp(-\alpha L); \qquad (4)$$

2) при коллинеарной геометрии:

$$L_{opt} = \frac{1}{\alpha + \alpha_s/2} \ln\left(\frac{2\alpha}{\alpha_s} + 2\right);$$
(5)

$$\frac{I_{-1}(0)}{I_{0}(0)} = \frac{\pi^{2}}{2\lambda^{2}} \frac{M_{2}P_{a}}{S} \left(\alpha + \frac{\alpha_{s}}{2}\right)^{-2} \times$$
(6)

$$\times \{1 + \exp\left[-2\left(\alpha + \alpha_s/2\right)L\right] - 2\exp\left[-\left(\alpha + \alpha_s/2\right)L\right]\} \times \exp\left(-\alpha_sL\right).$$

При квазиортогональной геометрии АО-взаимодействия угол отклонения дифрагированного излучения равен удвоенному углу Брэгга θ_в:

$$\theta_{\rm B} = \frac{\lambda F}{2V} \tag{7}$$

и пропорционален частоте звука *F*, что позволяет использовать этот режим для создания АО-дефлектора.

Для определенности предполагалось, что $\theta_{\rm B} = 0.1$ и $F = 0.2V/\lambda$. Максимальное значение коэффициента АО-качества M_2 в этом режиме соответствует продольной звуковой волне, распространяющейся вдоль кристаллографической оси [111] со скоростью $V_{L[111]}$. В табл. 2 приводится только наибольшее значение коэффициента АО-качества Таблица 2. Свойства АО-дефлекторов на основе монокристаллов

Кристалл	<i>L_{opt}</i> , см	<i>F</i> , МГц	<i>M</i> ₂ , 10 ⁻¹⁵ с ³ /кг	$I_1/I_0,$ 10^{-4}	N
GaSb	1.11	9.0	1950	8	30
AlSb	0.40	10.2	430	0.6	80
Ge	0.44	11.1	240	0.4	80
GaAs	0.22	10.8	120	0.10	150
Si	2.74	18.7	6.5	0.07	11
GaP	0.24	13.3	50	0.04	130

 M_2 . Отметим, что эффективная фотоупругая постоянная зависит от поляризации излучения:

1) если вектор поляризации электромагнитной волны параллелен кристаллографической оси [111]:

$$p_{eff}^{\parallel} = \frac{p_{11} + 2p_{12} + 4p_{44}}{3};$$
(8)

2) если вектор поляризации электромагнитной волны ортогонален указанному направлению:

$$p_{eff}^{\perp} = \frac{p_{11} + 2p_{12} - 2p_{44}}{3}.$$
 (9)

Число разрешимых элементов *N* было определено из следующего соотношения:

$$N = \frac{\Delta \Theta}{\Delta \varphi},\tag{10}$$

где $\Delta \theta$ — ширина диапазона углов отклонения дифрагированного излучения в среде при изменении частоты и волнового числа звука на ΔF и ΔK соответственно:

$$\Delta \Theta = \frac{\Delta K}{k} = \frac{\lambda \Delta F}{nV},\tag{11}$$

а $\delta \phi$ — ширина углового спектра пучка дифрагированного излучения с апертурой d_i в плоскости АО-взаимодействия:

$$\delta \varphi = \frac{\lambda}{nd_i}.$$
 (12)

В работе [12] приводится следующее выражение для полосы частот звука ΔF , в которой происходит эффективное АО-взаимодействие при квазиортогональной геометрии:

$$\Delta F = \frac{1.8nV^2}{\lambda FL}.$$
(13)

Таким образом, число разрешимых элементов *N* равно:

$$N = \frac{1.8nVd_i}{\lambda FL},\tag{14}$$

где d и $L = L_{opt} = 1/\alpha$ — размеры излучателя звука, а поперечные размеры пучка ТГц излучения, па-

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 2 2020

Кристалл	<i>F</i> , МГц	α_s, cm^{-1}	<i>М</i> ₂ , 10 ⁻¹⁵ с ³ /кг	<i>L_{opt}</i> , см	$I_{-1}/I_0, 10^{-4}$	$R, 10^3$
GaSb	317.2	1.2 [13]	2535	0.85	4.3	0.8
AlSb	303.4	1.0	589	0.65	0.5	0.5
Ge	393.9	0.8 [14]	107	0.75	0.12	0.6
GaAs	344.0	0.6 [14]	72	0.59	0.04	0.4
Si	575.8	0.6 [14]	0.3	1.81	0.003	1.4
GaP	393.5	0.5 [15]	12	0.68	0.008	0.4

Таблица 3. Свойства АО фильтров на основе монокристаллов

дающего на звуковой столб, предполагались равными d = 5 мм и $d_i = 10$ мм.

При коллинеарной геометрии АО-взаимодействия пучок излучения пересекает существенно большее число штрихов фазовой дифракционной решетки, наведенной в среде акустической волной. Поэтому селективность АО-взаимодействия к длине волны излучения возрастает, что позволяет использовать этот режим при создании АОфильтров. Максимальное значение АО-качества M_2 в этом режиме соответствует продольной звуковой волне, распространяющейся вдоль кристаллографической оси [100] со скоростью $V_{L[100]}$, и эффективной фотоупругой постоянной $p_{eff} = p_{11}$, а необходимая частота звука может быть рассчитана следующим образом:

$$F = \frac{2nV}{\lambda}.$$
 (15)

Используя векторную диаграмму, можно показать, что при обратной коллинеарной дифракции полоса эффективного АО-взаимодействия по волновому числу света в 2 раза меньше, чем по волновому числу звука: $\Delta k = \Delta K/2$. Поэтому спектральная разрешающая способность $R = \lambda/\Delta\lambda$ АО-фильтра ТГц излучения была рассчитана по формуле [16]:

$$R = \frac{2\pi n}{\lambda} \frac{1}{\sqrt[4]{(\alpha + \alpha_s/2)^4 + (0.89\pi/L)^4}}.$$
 (16)

В табл. 2 приведены результаты расчётов максимального числа разрешимых элементов N и эффективности дифракции I_1/I_0 для АО-дефлекторов, работающих в режиме квазиортогональной геометрии взаимодействия. Установлено, что АО-дефлекторы с большей эффективностью дифракции будут характеризоваться меньшим предельным числом разрешимых элементов. Этот факт обусловлен тем, что эффективность дифракции пропорциональна длине АО-взаимодействия L, в то время как число разрешимых элементов обратно пропорционально L. Поэтому изолинии для данного материала при изменении длины АО- взаимодействия L на данной диаграмме будут параллельны кривым $NI_1/I_0 = \text{const.}$

Аналогичные расчеты были выполнены и для АО-фильтров ТГц излучения. Из табл. 3 следует, что значения разрешающей способности R АОфильтров на основе различных кристаллов не коррелирует с максимально достижимой эффективностью дифракции I_{-1}/I_0 . Это связано с тем, что рассмотренные кристаллы характеризуются существенно различающимися значениями коэффициента АО-качества. Если бы это было не так, то при увеличении значения I_{-1}/I_0 на 2 порядка величина *R* возрастала бы на порядок, т. к. эффективность дифракции обратно пропорциональна квадрату комбинации ($\alpha + \alpha_{c}/2$) коэффициентов затухания звука и поглощения излучения, в то время как разрешающая способность обратно пропорциональна первой степени указанной комбинации.

Таким образом, впервые приведенная систематизация параметров монокристаллов позволила оценить характеристики АО-дефлекторов и фильтров ТГц излучения. Показано, что наиболее перспективным материалом АО-ячейки является антимонид галлия, охлажденный до температуры жидкого гелия. При комнатной температуре целесообразно использовать антимонид алюминия, что позволит увеличить эффективность АО-дифракции до 5 раз по сравнению с германием.

Работа выполнена при финансовой поддержке РНФ (проект № 18-12-00430).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Paz J.A., Bonvalet A., Joffre M.* // Opt. Expr. 2019. V. 27. № 4. P. 4140.
- 2. *Nakajima K.* // Light Sci. Appl. 2017. V. 6. Art. № e17063.
- 3. Nikitin P.A. et al. // Phys. Proc. 2016. V. 84. P. 146.
- 4. *Palik E.* Handbook of optical constants of solids. Orland Florida: Academic Press, 1985. 999 p.
- 5. Peters J. et al. // Proc. SPIE. 1998. V. 3424. P. 98.

- 6. *Berdekas D., Ves S.* // Phys. Stat. Sol. B. 2012. V. 249. № 8. P. 1521.
- 7. *Lide D.* Handbook of chem. and phys. 90th ed. Boca Raton: CRC Press. 2009. 2760 p.
- 8. *Martienssen W., Warlimont H.* Handbook of condens. matt. and mater. data. Berlin, Heidelberg: Springer. 2005. 1121 p.
- 9. *Kuriakose M.* // Phys. Rev. B. 2017. V. 96. № 13. Art. № 134122.
- Никитин П.А. Волошинов В.Б., Герасимов В.В., Князев Б.А. // Письма в ЖТФ. 2017. Т. 43. № 13. С. 89; Nikitin P.A., Voloshinov V.B., Gerasimov V.V., Knyazev B.A. // Techn. Phys. Lett. 2017. V. 43. № 7. Р. 635.

- 11. Nikitin P.A., Voloshinov V.B. // Phys. Proc. 2015. V. 70. P. 712.
- 12. Uchida N., Niizeki N. // Proc. IEEE. 1973. V. 61. № 8. P. 1073.
- Bougnot G., Galibert G., Desfours J. // Phys. Stat. Sol. B. 1972. V. 49. № 1. P. 257.
- 14. *Madelung O., Rossler U., Schulz M.* Group IV Elements, IV-IV and III-V compounds. Part A. Lattice Properties. Berlin: Heidelberg: Springer. 2001.
- 15. Шаскольская М.П. Акустические кристаллы. М.: Наука. 1982. 632 с.
- 16. *Никитин П.А., Волошинов В.Б* // Учен. зап. физ. фак-та Моск. ун-та. 2016. № 6. С. 166601.