УДК 621.313

ИССЛЕДОВАНИЕ ФИЗИЧЕСКИХ ПРОЦЕССОВ В ГИСТЕРЕЗИСНЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЯХ ЭНЕРГИИ

© 2020 г. С. Ю. Останин^{1,} *, М. С. Зубарев¹, Е. Н. Павкин¹, П. С. Рудник², Цуй Шумэй³, Вэй Го³

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ", Москва, Россия

²Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики

и приборостроения имени академика Н.А. Пилюгина", Москва, Россия

³Харбинский политехнический университет, Харбин, Китайская Народная Республика

**E-mail: OstaninSY@mpei.ru* Поступила в редакцию 30.08.2019 г. После доработки 16.09.2019 г.

Принята к публикации 28.10.2019 г.

Изложены результаты моделирования и исследования электромагнитных процессов в гистерезисных электромеханических преобразователях энергии. Выявлены и проанализированы особенности процессов в них, созданы их математические модели. Процессы интересны тем, что текущее состояние магнитной цепи преобразователя зависит от всех предыдущих состояний, а текущий режим его работы зависит от всех предыдущих режимов.

DOI: 10.31857/S0367676520020295

Для исследования физических процессов в гистерезисных электромеханических преобразователях энергии, применяемых в большинстве случаев как гистерезисный электродвигатель [1, 2], предложен подход, основанный на последовательной реализации полной модели гистерезисного электропривода, иерархическая структура которой показана на рис. 1.

Принципиальные и существенные отличия от расчетов других видов электромеханических преобразователей энергии [3–8], учтенные в работе, связаны с расчетами электромагнитных полей в роторе и с объединением расчетных аппаратов для ротора и для других элементов магнитной системы. На первом, самом высоком, уровне структуры предложенной полной математической модели находится модель гистерезисного электропривода. На втором уровне модели преобразователя частоты и (или) напряжения — модели гистерезисного преобразователя и системы управления.

Из модели преобразователя частоты и (или) напряжения на третий уровень в его цепную модель передаются значения тока в обмотке статора, I_S с напряжением U_S и частотой f_S . В цепной модели рассчитываются параметры импульсов тока (напряжения) для намагничивания ротора и управления электродвигателем: амплитуда U_{PUL} , фаза α_{PUL} , длительность импульса τ_{PUL} .

Цепная модель основана на предложенной системе уравнений:

$$\begin{pmatrix} U_{sk} \\ U_{rk1} \\ U_{rk2} \\ \vdots \\ U_{rkv} \\ \vdots \\ U_{rkv} \\ \vdots \\ U_{rkn} \end{pmatrix} = \begin{pmatrix} Z_{s\delta k} & M_{\delta k1} & M_{\delta k2} & \cdots & M_{\delta kn} \\ M_{\delta k1} & L_{\delta rk1} & 0 & \cdots & 0 & \cdots & 0 \\ M_{\delta k2} & 0 & L_{\delta rk2} & \cdots & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ M_{\delta kv} & 0 & 0 & \cdots & L_{\delta rkv} & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ M_{\delta kn} & 0 & 0 & \cdots & 0 & \cdots & L_{\delta rkn} \end{pmatrix} \times \begin{pmatrix} I_{sk} \\ I_{rk1} \\ I_{rk2} \\ \vdots \\ I_{rkv} \\ \vdots \\ I_{rkn} \end{pmatrix}.$$
(1)

Рис. 1. Иерархическая структура полной модели гистерезисного электропривода.

В (1) $U_{sk} = \text{colon} (U_{sdk}, U_{sqk})$ – вектор-столбец временной гармоники порядка k напряжения электропитания, содержащий проекции по осям d и q; $U_{rkv} = \text{colon} (0, -E_{rrqkv})$ – вектор-столбец гармоники порядка k во времени и порядка v == 1, 2, ... n в пространстве напряжения, соответствующего E_{rrqkv} — электродвижущей силе (ЭДС) ротора; $Z_{s\delta k}$ — матрица, определяющая гармонику порядков k и v взаимной индукции между обмоткой статора и воздушным зазором δ ; $M_{\delta kv}$ — матрица, определяющая гармонику порядков k и v индуктивного сопротивления зазора δ ; $L_{\delta rkv}$ — матрица, определяющая гармонику порядков k и v взаимной индукции между зазором δ и гистерезисным слоем (ГС) ротора; $I_{sk} = \text{colon}(I_{sdk}, I_{sqk})$ вектор-столбец временной гармоники порядка kтока в обмотке статора; $I_{rkv} = \text{colon}(I_{rdkv}, I_{rqkv})$ вектор-столбец гармоники порядков k и v тока, эквивалентного гармоникам магнитодвижущей силы (МДС) ротора.

Указанные матрицы определяются следующим образом:

$$Z_{s\delta k} = \begin{pmatrix} r_s & -x_{s\delta qk} \\ x_{s\delta dk} & r_s \end{pmatrix}, \tag{2}$$

$$M_{\delta k\nu} = \begin{pmatrix} 0 & -x_{\delta q k\nu} \\ x_{\delta d k\nu} & 0 \end{pmatrix}, \tag{3}$$

$$L_{\delta r k \nu} = \begin{pmatrix} 0 & -x_{\delta r q k \nu} \\ x_{\delta r d k \nu} & 0 \end{pmatrix}.$$
 (4)

В (2)–(4) r_s – активное сопротивление обмотки статора; $x_{s\delta dk}$, $x_{s\delta qk}$ – составляющие по осям d и q полных индуктивных сопротивлений независимых электрических контуров; $x_{\delta dkv}$, $x_{\delta qkv}$ – составляющие по осям d и q гармоник порядков k и v взаимной индукции между обмоткой статора и ГС ротора; $x_{\delta r dkv}$, $x_{\delta r qkv}$ – составляющие по осям dи q полных индуктивных сопротивлений независимых электрических контуров, содержащих: $x_{\delta dkv}$, $x_{\delta qkv}$ – составляющие по осям d и q гармоник порядков k и v проводимости рассеяния потока ротора и составляющие гармоник намагниченности ГС.

Уравнения вида (1) составляются для всех временных гармоник магнитного поля гистерезисного преобразователя k = 1, 2, ... l. В результате формируется полная система равновесия электрических напряжений:

$$\begin{pmatrix} U_1 \\ \overline{U}_2 \\ \vdots \\ \overline{U}_k \\ \vdots \\ \overline{U}_l \end{pmatrix} = \begin{pmatrix} \tilde{Z}_1 & \tilde{0} & \cdots & \tilde{0} & \cdots & \tilde{0} \\ \tilde{0} & \tilde{Z}_2 & \cdots & \tilde{0} & \cdots & \tilde{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{0} & \tilde{0} & \cdots & \tilde{Z}_k & \cdots & \tilde{0} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \tilde{0} & \tilde{0} & \cdots & \tilde{0} & \cdots & Z_l \end{pmatrix} \times \begin{pmatrix} \overline{I}_1 \\ \overline{I}_2 \\ \vdots \\ \overline{I}_k \\ \vdots \\ \overline{I}_l \end{pmatrix}.$$
(5)

В (5) \overline{U}_k — матрица-столбец электрических напряжений для временной гармоники порядка kнапряжения электропитания и гармоник порядков k и v ЭДС ротора, эквивалентной остаточной намагниченности ротора; \overline{Z}_k — матрица электрических сопротивлений, соответствующих гармоникам порядка k и порядков k, v взаимных индукций и индуктивных сопротивлений элементов конструкции преобразователя; $\breve{0}$ — нулевая матрица $n \times n$; \overline{I}_k — матрица-столбец токов для временной гармоники порядка k тока в обмотке статора и гармоник порядков k и v токов, эквивалентных гармоникам МДС ГС ротора.

На четвертом уровне иерархической структуры находится полевая модель гистерезисного преобразователя, являющаяся объединением моделей пятого уровня: полевых моделей статора и ротора и средств их соединения.

На шестом уровне находятся модели магнитно-мягких материалов, магнитно-твердых гистерезисных материалов и материалов на границах сред. Модели магнитно-твердых гистерезисных материалов [9] сформированы с помощью методов и средств, математического моделирования, специализированных для гистерезисных электромеханических преобразователей энергии. Модели материалов на границах сред получены на основе анализа краевых и граничных условий при решении полевых задач.

Расчетные и экспериментальные значения основных показателей и параметров гистерезисных электродвигателей для электропривода машин по производству химических волокон и нитей приведены в табл. 1.

По результатам исследования можно отметить следующее.

1. Принципиальные вопросы при моделировании и исследовании процессов в гистерезисных электромеханических преобразователях в импульсных режимах управления ими состоят в расчете динамических электромагнитных процессов в период действия импульсов и после них.

2. В соответствии с разработанным подходом моделирование и расчеты гистерезисных электромеханических преобразователей разных конструкций и исполнений целесообразно выполнять по единой схеме, но с учетом степени проявления в элементах магнитной системы (в первую очередь, ротора) тангенциальной, радиальной, осевой составляющих электромагнитного поля.

3. Принципиальные и существенные отличия от расчетов других видов электромеханических преобразователей энергии связаны с расчетами электромагнитных полей в роторе и с объединением расчетного аппарата для ротора с расчетным аппаратом для других элементов магнитной системы.

4. Система уравнений, полученная для электромагнитных процессов в гистерезисном преобразователе, определяет связь каждой гармоники порядка k тока в обмотке статора с каждой гармоникой порядка k во времени и v в пространстве тока, эквивалентного гармоникам МДС ГС ротора.

5. Оценка адекватности моделирования и расчетов на основе сравнения результатов расчета с экспериментальными данными показала каче-

Параметры, показатели	Единица измерения	Значения			
		ГХЭД1		ГХЭД2	
		расчет	опыт	расчет	опыт
Номинальная частота тока электропитания при пуске, разгоне и в синхронном режиме	Гц	200	200	200	200
Синхронная (номинальная) частота вращения ротора	об./мин	6000	6000	6000	6000
Номинальный момент	Н ∙ см	200	200	300	300
Номинальная мощность	Вт	1256.64	1256.64	1884.96	1884.96
Длина пакета статора	ММ	62.0	62.0	82.0	82.0
Длина активной части ротора	ММ	64.0	64.0	84.0	84.0
Коэффициент полезного действия (КПД) в режиме без управления возбуждением	%	73.3	75.0	78.2	80.0
Коэффициент мощности в режиме без управления возбуждением	отн. ед.	0.499	0.500	0.504	0.500
КПД в режиме управления возбуждением	%	87.7	89.0	89.4	91.0
Коэффициент мощности в режиме управления воз- буждением	отн. ед.	0.716	0.700	0.728	0.700

Таблица 1. Расчетные и экспериментальные значения показателей и параметров высокотехнологичных промышленных электродвигателей

ственную и количественную непротиворечивость полученных результатов.

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 19-58-53025 ГФЕН-а и № 18-58-53047 ГФЕН-а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Делекторский Б.А., Тарасов В.Н. Управляемый гистерезисный электропривод. М.: Энергоатомиздат, 1983. 128 с.
- 2. Никаноров В.Б., Останин С.Ю., Шмелева Г.А. // Электротехника. 2002. № 9. С. 5.

- 3. Тозони О.В. Метод вторичных источников в электротехнике. М.: Энергия, 1975. 296 с.
- 4. Решмин Б.И. // Электротехника. 2005. № 11. С. 59.
- 5. *Иванов-Смоленский А.В.* Электрические машины. Т. 1, 2. М.: Издательский дом МЭИ, 2006. 1170 с.
- 6. Амбарцумова Т.Т., Ле Куанг Кыонг // Изв. вузов. Электромеханика. 2012. № 1. С. 37.
- 7. Дмитриев Б.Ф., Черевко А.И., Гаврилов Д.А. // Электротехника. 2005. № 7. С.3.
- 8. Рамазанов И.М. // Инж. физ. 2010. № 5. С. 29.
- 9. *Миляев И.М., Алымов М.И., Юсупов В.С. и др. //* Порошк. металлург. и функц. покрытия. 2011. № 4. С. 54.

170