УДК 539.171.11

СЛАБОСВЯЗАННЫЕ ТРЕХАТОМНЫЕ LiHe₂ МОЛЕКУЛЫ

© 2020 г. Е. А. Колганова^{1, 2, *}, В. Руднев³

¹ Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия

²Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

³Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет", Санкт-Петербург, Россия

**E-mail: kea@theor.jinr.ru*

Поступила в редакцию 30.10.2019 г. После доработки 25.11.2019 г. Принята к публикации 27.12.2019 г.

Исследованы свойства трехатомных кластеров LiHe₂. В рамках дифференциальных уравнений Фаддеева рассчитаны энергии связи и длины рассеяния атома на слабосвязанном димере.

DOI: 10.31857/S0367676520040158

ВВЕДЕНИЕ

Слабосвязанные трехатомные кластеры, взаимодействие которых описывается потенциалами ван-дер-ваальсового типа, представляют собой системы, в которых наиболее вероятно проявление эффекта Ефимова [1]. Межатомное парное взаимодействие является короткодействующим, убывая быстрее, чем $1/r^6$, где *r* расстояние между атомами, и вполне может быть резонансным, поскольку парные длины рассеяния в десятки, а иногда и в сотни раз больше, чем эффективный радиус взаимодействия. Наличие именно этих условий хотя бы в двух парных подсистемах тримера необходимо, чтобы в трехчастичной системе возникло эффективное дальнодействующее притяжение, которое может поддерживать вплоть до бесконечного количества связанных состояний. Качественный анализ, сделанный Ефимовым [1], показал, что число связанных состояний системы трех бозонов пропорционален логарифму отношения двухчастичной длины рассеяния к эффективному радиусу взаимодействия парных сил. В случае трехчастичной системы, состоящей из атомов⁴Не – тримера гелия, оценка Ефимова позволяет ожидать существование одного возбужденного состояния в молекуле тримера гелия (см. обсуждение в [2, 3]). Действительно, результаты численных расчетов с различными реалистическими атом-атомными потенциалами показали, что система ⁴Не₃ обладает единственным возбужденным состоянием Ефимовского типа [2-13].

Экспериментальные исследования слабосвязанных молекул очень сложны и многие годы вопрос о существовании связанного состояния димера гелия оставался открытым. Впервые димер гелия был открыт в независимых экспериментах [14] и [15] и была дана экспериментальная оценка его энергии связи – порядка 1 мК [16]. Позднее, измерения среднего значения длины связи, $\langle r \rangle = 52 \pm 4$ Å, показали, что димер гелия является самой протяженной среди известных двухатомных молекул [17]. В той же работе были измерены энергии связи димера $1.1_{-0.2}^{+0.3}$ мК и длина рассеяния 104_{-18}^{+8} Å [17]. Однако, недавние эксперименты [18], основанные на комбинации техники визуализации

кулоновского взрыва [19] и селекции кластеров по массе с помощью дифракции [15], дают несколько другую оценку энергии связи димера –

1.76^{+0.15}_{-0.15} мК. Такая неопределенность в экспериментальных результатах не позволяет выбрать предпочтительную потенциальную модель, поскольку различные потенциальные модели дают примерно тот же разброс в предсказаниях энергии связи. Очевидно, что дальнейшие эксперименты по определению энергии связи димера необходимы, чтобы прояснить ситуацию.

В эксперименте [20], была впервые дана оценка размеров основного состояния трехатомной молекулы ⁴He₃, которая равна 11^{+4}_{-5} Å, что соответствует теоретическим предсказаниям. Лишь недавно в эксперименте [21] с использованием той же методики, что и в [17] была измерена разность между энергиями связи возбужденного состояния тримера и основного состояния димера, которая оказалась равной 0.98 ± 0.2 мK, что находится в очень хорошем согласии с результатами численных расчетов [2–12]. Теоретические исследования механизма возникновения возбужденного состояния в ⁴Не₃, проведенные в [6, 7, 11, 12] показали, что это состояние является состоянием Ефимовского типа.

Другими естественными трехчастичными системами Ефимовского типа могут быть Ван-дер-Ваальсовские молекулы, состоящие из двух атомов гелия и атома щелочных металлов. Взаимодействие между атомами гелия и щелочных металлов, как и в случае димера гелия, поддерживает одно слабосвязанное состояние и в таких трехчастичных системах вполне могут существовать Ефимовские уровни. В настоящей работе мы рассматриваем системы ⁴He₂⁶Li и ⁴He₂⁷Li и, используя уравнения Фаддеева в представлении полного углового момента [22, 23], проводим расчеты энергий связи и длин рассеяния с использованием реалистических атом-атомных потенциалов [24–26].

МЕТОД ОПИСАНИЯ ТРЕХАТОМНЫХ МОЛЕКУЛ

Конфигурационное пространство системы трех частиц после отделения движения центра масс удобно описывать с помощью приведенных координат Якоби \vec{x}_{α} , \vec{y}_{α} , $\alpha = 1, 2, 3$:

$$\vec{x}_{\alpha} = \left[\frac{2m_{\beta}m_{\gamma}}{m_{\beta} + m_{\gamma}}\right]^{1/2} (\vec{r}_{\beta} - \vec{r}_{\gamma}),$$

$$\vec{y}_{\alpha} = \left[\frac{2m_{\alpha}(m_{\beta} + m_{\gamma})}{m_{\alpha} + m_{\beta} + m_{\gamma}}\right]^{1/2} \left(\vec{r}_{\alpha} - \frac{m_{\beta}\vec{r}_{\beta} + m_{\gamma}\vec{r}_{\gamma}}{m_{\beta} + m_{\gamma}}\right),$$
(1)

где \vec{r}_{α} — радиус-векторы частиц с массами m_{α} , а (α , β , γ) образуют циклическую перестановку индексов (1, 2, 3). Якобиевские вектора с другими индексами получаются с помощью преобразования поворота [22, 23].

Полную волновую функцию Ψ трех-частичной системы можно записать в виде суммы компонент Фаддеева Φ_{α}

$$\Psi(\vec{x}_{\alpha}, \vec{y}_{\alpha}) = \sum_{\alpha} \Phi_{\alpha}(\vec{x}_{\alpha}, \vec{y}_{\alpha})$$
(2)

которые удовлетворяют системе дифференциальных уравнений

$$(-\Delta_{\vec{x}_{\alpha}} - \Delta_{\vec{y}_{\alpha}} + V_{\alpha}(|\vec{x}_{\alpha}|) - E)\Phi_{\alpha}(\vec{x}_{\alpha}, \vec{y}_{\alpha}) = = -V_{\alpha}(|\vec{x}_{\alpha}|)\sum_{\beta \neq \alpha} \Phi_{\beta}(\vec{x}_{\beta}, \vec{y}_{\beta}),$$
(3)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 4 2020

где V_{α} – потенциал взаимодействия в паре α , а E – полная энергия системы. В случае нулевого полного углового момента степени свободы, связанные с вращением трех-частичной системы как целой, можно отделить [23], в результате получится следующая система трехмерных дифференциальных уравнений для соответствующей проекции компоненты Фаддеева [23]

$$\begin{pmatrix} -\frac{\partial^2}{\partial x_{\alpha}^2} - \frac{\partial^2}{\partial y_{\alpha}^2} - \left(\frac{1}{x_{\alpha}^2} + \frac{1}{y_{\alpha}^2}\right) \frac{\partial}{\partial z_{\alpha}} (1 - z_{\alpha}^2) \times \\ \times \frac{\partial}{\partial z_{\alpha}} + V_{\alpha}(x_{\alpha}) - E \end{pmatrix} \varphi_{\alpha}(x_{\alpha}, y_{\alpha}, z_{\alpha}) =$$

$$= -V_{\alpha}(x_{\alpha}) \sum_{\beta \neq \alpha} \varphi_{\beta}(x_{\beta}, y_{\beta}, z_{\beta}),$$

$$(4)$$

где x_{α} , y_{α} и z_{α} связаны с соответствующими координатами Якоби:

$$\begin{aligned} x_{\alpha} &= |\vec{x}_{\alpha}|, \quad y_{\alpha} = |\vec{y}_{\alpha}|, \quad z_{\alpha} = \frac{(\vec{x}_{\alpha}, \vec{y}_{\alpha})}{x_{\alpha}y_{\alpha}}, \\ x_{\alpha}, \quad y_{\alpha} \in [0, \infty), \quad z_{\alpha} \in [-1, 1]. \end{aligned}$$

В случае, когда две частицы в трех-частичной системе тождественны, уравнения Фаддеева (4) упрощаются. Например, в рассматриваемом случае системы ⁴He₂Li, частицы 1 и 2, соответствующие атомам ⁴He, тождественны и компоненты Фаддеева $\varphi_1(x_1, y_1, z_1)$ и $\varphi_2(x_2, y_2, z_2)$ преобразуются друг в друга с помощью соответствующего преобразования поворота. Поэтому достаточно рассматривать только две независимые компоненты Фаддеева.

Асимптотические граничные условия с учетом единственности связанного состояния каждой парной подсистемы имеют вид

$$\varphi_{\alpha}(x_{\alpha}, y_{\alpha}, z_{\alpha}) = \psi_{d}(x_{\alpha}) \exp(i\sqrt{E} - \varepsilon_{d}y_{\alpha})a_{0}(z_{\alpha}) + A\left(\frac{y_{\alpha}}{x_{\alpha}}, z_{\alpha}\right) \exp(i\sqrt{E}\rho)/\sqrt{\rho},$$
(5)

где Ψ_d и ε_d волновая функция и энергия связи соответствующего димера, а $\rho = \sqrt{x_{\alpha}^2 + y_{\alpha}^2}$ – гиперрадиус. Коэффициенты $a_0(z_{\alpha})$ и $A(y_{\alpha}/x_{\alpha}, z_{\alpha})$ описывают вклад каналов упругого рассеяния (2 + 1) и трех-частичного развала (1 + 1 + 1). Последним слагаемым в (5) при энергии ниже трех-частичного порога развала можно пренебречь.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Для описания взаимодействия между атомами гелия использовался недавно предложенный потенциал PRZ [22]. КТТҮ потенциалы [23] использовались для описания взаимодействия атома Не с атомами щелочных металлов. В табл. 1 приведены результаты расчетов энергии связи димеров,

Таблица 1. Абсолютное значение энергии связи димеров $|\varepsilon_d|$ и длины рассеяния $\ell_{sc}^{(l+1)}$, вычисленные с He–He потенциалом PRZ [22] и с KTTY потенциалами [23], описывающими взаимодействие атома He с атомами щелочных металлов

Димер	⁴ He ₂	⁴ He ⁶ Li	⁴ He ⁷ Li	⁴ He ²³ Na	⁴ He ³⁹ K	⁴ He ⁸⁵ Rb	⁴ He ¹³³ Cs
$ \varepsilon_d $, MK	1.620	1.515	5.622	28.97	11.20	10.27	4.945
$\ell_{\rm sc}^{(1+1)},$ Å	90.28	89.42	48.84	23.37	33.32	34.02	45.32

Таблица 2. Абсолютные значения энергии связи димера гелия $|\varepsilon_d|$ (мК), основного $|E_0|$ (мК) и возбужденного $|E_1|$ (мК) состояний системы ${}^{4}\text{He}_{2}^{7}\text{Li}$ и длина рассеяния атома ${}^{4}\text{He}$ на димере ${}^{4}\text{He}^{7}\text{Li}$, $\ell_{sc}^{(1+2)}$ (Å), вычисленные с He–Li потенциалом КТТҮ [23]

	*	[29]	[30]	[33]	[33]	[35]	[36]
Не–Не потенциал	PRZ [22]	HFD-B [31]	TTY [32]	Jeziorska [34]	Jeziorska [34]	LM2M2 [37]	LM2M2 [37]
ε _d , мК	1.62	1.68	1.32	1.74	1.74	1.31	1.31
$ E_0 $, MK	80.60	81.03	80.0	81.29	76.32	79.36	78.73
<i>E</i> ₁ , мК	5.654			5.67	5.51	5.642	5.685
$\ell_{\rm sc}^{(1+2)},$ Å	553						

которые показывают, что взаимодействие между атомами гелия и щелочных металлов, как и в случае лимера гелия. поддерживает лишь одно слабосвязанное состояние. Вычисленная энергия связи димера гелия, 1.62 мК, довольно близка к экспериментальному значению 1.76 ± 0.15 мK, полученному в работе [15]. Энергия связи димера ⁴He⁶Li меньше по абсолютному значению, чем в димере ${}^{4}\text{He}_{2}$ и в трех-частичной системе ${}^{4}\text{He}_{2}{}^{6}\text{Li}$ порогом развала будет энергия димера гелия, в то время как в системе ${}^{4}\text{He}_{2}{}^{7}\text{Li}$ таким порогом будет энергия связи ⁴He⁷Li. Заметим, что энергия связи ⁴Не¹³³Сs также довольно мала и соответствующий тример ⁴He₂¹³³Cs вполне может быть близок к Ефимовскому типу. Длины рассеяния $\ell_{\rm sc}^{\rm (l+l)}$, приведенные в табл. 1, довольно велики и составляют десятки ангстрем, хотя с увеличение массы атома увеличивается и эффективный радиус взаимодействия, поэтому вероятность появления второго возбужденного состояния Ефимовского типа мала.

Для вычисления энергии связи систем ${}^{4}\text{He}_{2}{}^{6}\text{Li}$ и ${}^{4}\text{He}_{2}{}^{7}\text{Li}$ мы решаем уравнения (4) с граничными условиями (5). Детали используемой численной процедуры описаны в [7, 9, 27, 28]. Полученные результаты в сравнении с результатами других авторов приведены в табл. 2 и 3.

Во второй и третьей строках табл. 2 и 3 приведены используемые в расчетах модели Не-Не взаимодействия и энергия связи димера гелия, которую они дают. В работах [29, 30] вычисления проводились методом Монте Карло с использованием Не-Не потенциалов HFD-B [31] и TTY [32]. В работе [33] для вычисления спектра с ис-

Таблица 3. Абсолютные значения энергии связи димера гелия $|\varepsilon_d|$ (мК), основного $|E_0|$ (мК) и возбужденного $|E_1|$ (мК) состояний системы ⁴He₂⁶Li и длина рассеяния атома ⁶Li на димере ⁴He₂, $\ell_{sc}^{(l+2)}$ (Å), вычисленные с He–Li потенциалом КТТҮ [23]

	*	[29]	[33]	[35]
Не-Не потенциал	PRZ [22]	HFD-B [31]	Jeziorska [34]	LM2M2 [37]
$ \varepsilon_d , MK$	1.62	1.68	1.74	1.31
$ E_0 $, MK	58.38	58.72	58.88	57.23
<i>E</i> ₁ , мК	2.049		2.09	1.937
$\ell_{\rm sc}^{(l+2)},$ Å	144			

СЛАБОСВЯЗАННЫЕ ТРЕХАТОМНЫЕ LiHe₂ МОЛЕКУЛЫ

пользованием потенциала Jeziorska [34] использовались методы адиабатического гиперсферического разложения (колонка 5 табл. 2 и колонка 4 табл. 3) и разложения по функциям Гаусса (колонка 6 табл. 2). Адиабатический гиперсферический метод использовался также в работах [35, 36] с использованием модели Не–Не взаимодействия LM2M2 [37]. Для полноты следует также отметить работу [38] в которой впервые была дана оценка верхней границы основного состояния –

45.7 мК для ${}^{4}\text{He}_{2}^{7}\text{Li}$ и —31.4 мК для ${}^{4}\text{He}_{2}^{6}\text{Li}$ используя адиабатический гиперсферический метод, а также предсказания [39] существования возбуж-

денного состояния в системе ${}^{4}\text{He}_{2}^{7}\text{Li}$ полученные на основе идеи скейлинга и модели нулевого радиуса.

Различные методы дают довольно близкие результаты, не смотря на использование различных потенциальных моделей для взаимодействия между атомами гелия. В обеих рассматриваемых трехчастичных системах имеется лишь одно возбужденное состояние, которое лежит довольно близко к парному порогу развала, поэтому и соответствующие длины рассеяния довольно велики (см. последнюю строку табл. 2 и 3). Таким образом, на основе полученных данных нельзя исключить наличия Ефимовских состояний в этих трехатомных системах.

СПИСОК ЛИТЕРАТУРЫ

- 1. Ефимов В.Н. // ЯФ. 1970. Т. 12. С. 1080.
- Kolganova E.A., Motovilov A.K., Sandhas W. // Few-Body Syst. 2011. V. 51. P. 249.
- Kolganova E.A., Motovilov A.K., Sandhas W. // Few-Body Syst. 2017. V. 58. P. 35.
- Колганова Е.А., Мотовилов А.К., Зандхас В. // ЭЧАЯ. 2009. Т. 40. С. 396; Kolganova E.A., Motovilov A.K., Sandhas W. // Phys. At. Nucl. 2009. V. 40. P. 206.
- 5. *Naidon P., Endo Sh.* // Rep. Prog. Phys. 2017. V. 80. Art. № 056001.
- Колганова Е.А., Мотовилов А.К. // ЯФ. 1999. Т. 62. С. 1253; Kolganova E.A., Motovilov A.K. // Phys. Atom. Nucl. 1999. V. 62. P. 1179.
- 7. *Roudnev V., Cavagnero M.* // J. Phys. B. 2012. V. 45. Art. № 025101.
- 8. *Hiyama E., Kamimura M.* // Phys. Rev. A. 2012. V. 85. Art. № 062505.
- Roudnev V.A., Yakovlev S.L., Sofianos S.A. // Few-Body Systems. 2015. V. 37. P. 179.
- Salci M., Yarevsky E., Levin S.B. et al. // Int. J. Quant. Chem. 2007. V. 107. P. 464.

- Lazauskas R., Carbonell J. // Phys. Rev. A. 2006. V. 73. Art. № 062717.
- Kievsky A., Garrido E., Romero-Redondo C. et al. // Few-Body Systems. 2011. V. 51. P. 259.
- 13. Deltuva A. // Few-Body Systems. 2015. V. 56. P. 993.
- 14. *Luo F., McBane G.C., Kim G. et al.* // J. Chem. Phys. 1993. V. 98. P. 9687.
- 15. Schöllkopf W., Toennies J.P. // Science. 1994. V. 266. P. 1345.
- Luo F., Giese C.F., Gentry W.R. // J. Chem. Phys. 1996. V. 104. P. 1151.
- 17. Grisenti R., Schöllkopf W., Toennies J.P. et al. // Phys. Rev. Lett. 2000. V. 85. P. 2284.
- Zeller S., Kunitski M., Voigtsberger J. et al. // Proc. Nat. Acad. Sci. USA. 2016. V. 113. P. 14651.
- Vager Z., Naaman R., Kanter E.P. // Science. 1989. V. 244. P. 426.
- 20. Brühl R., Kalinin A., Kornilov O. et al. // Phys. Rev. Lett. 2005. V. 95. Art. № 063002.
- 21. Kunitski M., Zeller S., Voigtsberger J. et al. // Science. 2015. V. 348. P. 551.
- 22. *Меркурьев С.П., Фаддеев Л.Д.* Теория рассеяния для систем нескольких частиц. Наука, М., 1985.
- 23. Kostrykin V.V., Kvinstinsky A.A., Merkuriev S.P. // Few-Body Syst. 1989. V. 6. P. 97.
- 24. *Przybytek M., Cencek W., Komasa J. et al.* // Phys. Rev. Lett. 2010. V. 104. Art. № 183003.
- 25. Kleinekathöfer U., Lewerenz M., Mladenoc M. // Phys. Rev. Lett. 1999. V. 83. P. 4717.
- 26. Tang K.T., Toennies J.P., Yiu C.L. // Phys. Rev. Lett. 1995. V. 74. P. 1546.
- Kolganova E.A., Roudnev V., Cavagnero M. // Phys. Atom. Nucl. 2012. V. 75. P. 1240.
- 28. Kolganova E.A., Roudnev V. // Few-Body Syst. 2019. V. 60. P. 32.
- Stipanović P., Vranješ Markić L., Zarić D., Boronat J. // J. Chem. Phys. 2017. V. 146. Art. № 014305.
- Di Paola C., Gianturco F.A., Paesani F. et al. // J. Phys. B. 2002. V. 35. P. 2643.
- Aziz R.A., McCourt F.R.W., Wong C.C.K. // Mol. Phys. 1987. V. 61. P. 1487.
- 32. *Tang K.T., Toennies J.P., Yiu C.L.* // Phys. Rev. Lett. 1995. V. 74. P. 1546.
- Suno H., Hiyama E., Kamimura M. // Few-Body Syst. 2013. V. 54. P. 1557.
- 34. Jeziorska M., Cencek C., Patkowski K. et al. // J. Chem. Phys. 2007. V. 127. Art. № 124303.
- 35. Suno H. // Phys. Rev. A. 2017. V. 96. Art. № 012508.
- 36. *Wu M.-S., Han H.-L., Li Ch.-B., Shi T.-Y.* // Phys. Rev. A. 2014. V. 90. Art. № 062506.
- Aziz R.A., Slaman M.J. // J. Chem. Phys. 1991. V. 94. P. 8047.
- 38. Yuan J.M., Lin C.D. // J. Phys. B. 1998. V. 31. P. L637.
- Delfino A., Frederico T., Tomio L. // J. Chem. Phys. 2000. V. 113. P. 7874.