УДК 539.1.074.823

ИССЛЕДОВАНИЕ ПРОСТРАНСТВЕННОГО РАСПРЕДЕЛЕНИЯ ПОТОКА НЕЙТРОНОВ С ПОМОЩЬЮ ДЕТЕКТОРОВ НА ОСНОВЕ ГЕЛИЯ-3 И БОРА-10

© 2020 г. И. В. Мешков^{1,} *, С. И. Поташев², А. А. Афонин², Ю. М. Бурмистров², А. И. Драчев², С. В. Зуев², С. Х. Караевский², А. А. Каспаров², Е. С. Конобеевский², С. П. Кузнецов¹, В. Н. Марин², В. Н. Пономарев², Г. В. Солодухов²

¹Федеральное государственное бюджетное учреждение науки Физический институт имени П.Н. Лебедева Российской академии наук, Москва, Россия ²Федеральное государственное бюджетное учреждение науки

Институт ядерных исследований Российской академии наук, Москва, Россия

**E-mail: meshkoviv@lebedev.ru* Поступила в редакцию 30.10.2019 г.

После доработки 25.11.2019 г. Принята к публикации 27.12.2019 г.

Измерено пространственное распределение нейтронного потока из выводного канала фотонейтронного источника. Измерения проводились с помощью перемещаемого ³Не счетчика и позиционно-чувствительного детектора на основе слоя ¹⁰В. Приведены параметры распределения нейтронов. Работа проведена в рамках подготовки ядерно-физических экспериментов и прикладных исследований с помощью малоуглового рассеяния и дифракции.

DOI: 10.31857/S0367676520040195

введение

W-Ве-фотонейтронный источник нейтронов [1, 2] обеспечивает активацию различных образцов во внутренней полости источника при максимальной плотности потока тепловых нейтронов $10^{7}-10^{8}$ см⁻² · с⁻¹. Наличие коллимированного нейтронного канала позволяет выводить нейтроны из источника и планировать эксперименты с их использованием. Данная работа проводилась в рамках подготовки ядерно-физических экспериментов, физики твердого тела и прикладных исследований в области конденсированных сред и биологии с использованием малоуглового рассеяния, дифракции и рентгенографии. Для проектирования и создания различных физических установок вне источника необходимо оценить характеристики нейтронного поля, в частности, иметь информацию о пространственном распределении потока нейтронов на выходе из источника. В данной работе изучалось пространственное распределение потока нейтронов в зависимости от расстояния до центра источника вдоль оси коллиматора.

ИСТОЧНИК НЕЙТРОНОВ И ДЕТЕКТОРЫ ДЛЯ ИХ РЕГИСТРАЦИИ

Источник нейтронов [1, 2] на базе линейного ускорителя электронов состоит из собственно ускорителя с максимальной энергией 9 МэВ, тормозной мишени из вольфрама, мишени из бериллия для фоторождения нейтронов и модератора из полиэтилена объемом 1 м³ для термализации нейтронов. Для измерений вне источника имеется канал вывода нейтронов с коллиматором диаметром 3 см. Спектр вылетающих нейтронов содержит преимущественно тепловые нейтроны.

Горизонтальное распределение нейтронов из источника регистрировалось с помощью перемещаемого цилиндрического детектора на основе ³Не. Ядро ³Не захватывает нейтрон и распадается следующим образом:

$$n + {}^{3}\text{He} \rightarrow {}^{1}\text{H}(573 \text{ k} \Rightarrow \text{B}) + {}^{3}\text{H}(171 \text{ k} \Rightarrow \text{B}).$$

Горизонтальное и вертикальное распределения нейтронов измеряли с помощью позиционно-чувствительного детектора нейтронов (ПЧДН) на основе слоя ¹⁰В и пропорциональной камеры [3–6]. Ядро ¹⁰В захватывает нейтрон и образует ядро ¹¹В* в возбужденном состоянии, которое распадается двумя способами, как показано ниже:

n + ¹⁰B → ¹¹B* → ⁴He(1470 кэB) +
+ ⁷Li(841 кэB) +
$$\gamma$$
(476 кэB),
с вероятностью 93.6%;

$$n + {}^{10}\text{B} \rightarrow {}^{11}\text{B}^* \rightarrow {}^{4}\text{He} (1770 \text{ } \text{K} \Rightarrow \text{B}) +$$

+ ⁷Li (1013 кэВ) с вероятностью 6.4%.

Рис. 1. Распределения плотности потока нейтронов Φ на расстоянии 119 см от центра источника: *a* – горизонтальное, *б* – вертикальное распределения, измеренные ¹⁰В-детектором; *в* – горизонтальное распределение, измеренное ³Не-детектором.

Перед детекторами можно было установить маску из кадмия для снижения загрузки на коротких дистанциях источника. ³Не-детектор непрерывно перемещался в горизонтальной плоскости в интервале 14.5 см его координаты регистрировали и одновременно записывали осциллограммы сигналов. ¹⁰В-детектор регистрировал нейтроны в интервале 10 см в горизонтальной и вертикальной плоскостях. Оба детектора были расположены на стойке, установленной на оси выходного коллимированного нейтронного канала на расстояниях 119, 204, 304 или 364 см от центра источника.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для снижения скорости счета нейтронов в детекторах в измерениях на короткой дистанции 119 см от центра источника перед ними устанавливали маску из кадмия с равномерными рядами отверстий. Счетчик ³Не перемещали в горизонтальной плоскости перпендикулярно оси канала. Он, наряду с ПЧНД, регистрировал профиль потока нейтронов. Осциллограммы сигналов и положение детектора ³Не одновременно записывали с помощью сигнального процессора L-783 фирмы L-Card [7]. Амплитуды импульсов от ПЧНД использовали для определения координат Х и Унейтрона. Горизонтальное и вертикальное распределения нейтронов, измеренные с помощью ПЧДН, представлены на рис. 1а и 1б соответственно. Горизонтальное распределение нейтронов, измеренное с помощью ³Не-счетчика, представлено на рис. 1в. На рис. 1а и 1в можно заметить проявление периодической структуры, что связано с наличием отверстий в кадмиевой маске с шагом 1 см. Особенно это проявляется на рис. 1а, так как пространственное разрешение ПЧЛН по оси абсписс составляет 2 мм.

Измерения на расстоянии 204 см проводили и с кадмиевой маской, и без нее. Распределение нейтронов на этом расстоянии и далее становится более широким, а размер области регистрации становится недостаточным, для того чтобы целиком его зарегистрировать. В этом случае измерения выполняли с перестановкой всей системы регистрации с детектором ПЧДН вправо или влево относительно оси канала на 10 см и последующей сшивкой распределений.

Измеренное с помощью ПЧДН комбинированное распределение нейтронов, полученное с учетом центрального, левого и правого положений детектора, показано на рис. 2*a*. Такое же комбинированное распределение, измеренное с помощью ³Не-детектора, показано на рис. 2*б*. Можно заметить наличие нейтронного фона, которое регистрирует ³Не-детектор. Этот детектор, в отличие от плоского ¹⁰В-детектора, регистрирует с одинаковой эффективностью медленные нейтроны со всех направлений.

Измерения на расстоянии 304 см проводили только с помощью ³Не-детектора. В этом случае

Рис. 2. Горизонтальное распределение Φ на расстоянии 204 см, измеренное ¹⁰В-детектором (*a*) и ³Не-детектором (*б*).

распределение нейтронов становится еще более широким. Поэтому измерения выполняли также с перестановкой детекторной системы вправо или влево относительно оси канала на 10 см. Комбинированное распределение нейтронов, полученное в этом случае с помощью ³Не-детектора, показано на рис. 3.

Таблица 1. Параметры распределений нейтронов

Рис. 3. Горизонтальное распределение Φ , измеренное ³Не-детектором на расстоянии 304 см.

Распределение нейтронов на расстоянии 364 см соответствует равномерному фону, который регистрировали оба детектора, а набранная статистика не позволила выделить на этом фоне профиль пучка.

ЗАКЛЮЧЕНИЕ

Использование описанной выше методики позволило измерить характеристики пучка нейтронов вблизи выхода нейтронного канала фотонейтронного источника. Установлено, что распределение нейтронного потока на расстояниях менее 3 м обладает заметной асимметрией. В то же время на расстоянии 3.5 м наблюдается лишь небольшой однородный фон нейтронов. Итоговые результаты измерений показаны в табл. 1, где приведены: оценка ширины распределения пучка нейтронов по результатам измерений с ³Недетектором и плотности потока нейтронов Ф в измерениях с ¹⁰В- и ³Не-детекторами в отсутствие Cd-маски, а также соотношение плотно-

<i>L</i> , см	119	204	304	364
Ширина распределения (³ Не-детектор без маски), см	4.5	15	35	_
Φ (¹⁰ В-детектор без маски), нейтр. \cdot мкА ⁻¹ \cdot см ⁻² \cdot мин ⁻¹	3600	100	_	—
Φ (³ He-детектор без маски), нейтр. · мк A^{-1} · см $^{-2}$ · ми H^{-1}	5000	2000	800	—
Соотношение: $\Phi/\Phi_{\phi o h. p. нейтр}$ в измерениях с ³ Не детектором	5:1	2:1	1.5 : 1	

сти потока нейтронов Φ к плотности фона рассеянных нейтронов $\Phi_{\phi o H. p. нейт p}$ для измерений с помощью ³Не-детектора. Оба детектора обладают чрезвычайно низкой чувствительностью к гаммаквантам. Новый позиционно-чувствительный детектор на основе слоя ¹⁰В имеет, в отличие от ³Недетектора, малую чувствительность к фону рассеянных нейтронов, что позволяет использовать его на больших расстояниях от источника. В дальнейшем планируется проведение дополнительных работ по оптимизации характеристик пучка нейтронов из фотонейтронного источника.

СПИСОК ЛИТЕРАТУРЫ

 Андреев А.В., Бурмистров Ю.М., Зуев С.В. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 6. С. 824; Andreev A.V., Burmistrov Yu.M., Zuyev S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. № 6. Р. 748.

- 2. Zuyev S.V., Konobeevski E.S., Mordovskoy M.V. et al. // Phys. Part. Nucl. 2019. V. 50. № 5. P. 619.
- 3. Кузнецов С.П., Мешков И.В., Поташев С.И. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 6. С. 808; *Kuznetsov S.P., Meshkov I.V., Potashev S.I. et al.* // Bull. Russ. Acad. Sci. Phys. 2018. Т. 82. № 6. Р. 725.
- Кузнецов С.П., Мешков И.В., Поташев С.И. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. № 6. С. 811; *Kuznetsov S.P., Meshkov I.V., Potashev S.I. et al.* // Bull. Russ. Acad. Sci. Phys. 2018. Т. 82. № 6. Р. 728.
- 5. *Potashev S., Burmistrov Yu., Drachev A. et al.* // J. Phys. Conf. Ser. 2017. V. 798. Art. № 012160.
- 6. Поташев С.И., Бурмистров Ю.М., Драчев А.И. и др. // Поверхность. Рентг., синхротр. и нейтрон. исслед. 2018. № 10. С. 108.; *Potashev S.I., Burmistrov Yu.M., Drachev A.I. et al.* // J. Surf. Investig. Xray, Synchrotr. Neutr. Techn. 2018. V. 12. P. 627.
- 7. http://www.lcard.ru/download/l7xx_users_guide.pdf.