УДК 537.62,621.31

ФОРМИРОВАНИЕ И ИССЛЕДОВАНИЕ ФИЗИЧЕСКИХ СВОЙСТВ И ХАРАКТЕРИСТИК РОТОРОВ ВЫСОКОСКОРОСТНЫХ И СВЕРХВЫСОКОСКОРОСТНЫХ ЭЛЕКТРОМЕХАНИЧЕСКИХ ПРЕОБРАЗОВАТЕЛЕЙ ЭНЕРГИИ

© 2020 г. И. М. Миляев¹, С. Ю. Останин^{2,} *, В. А. Телегин², И. А. Смородин², П. С. Рудник³, Цуй Шумэй⁴, Вэй Го⁴

¹Федеральное государственное бюджетное учреждение науки "Институт металлургии и материаловедения имени А.А. Байкова", Москва, Россия

²Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский университет "МЭИ", Москва, Россия

³Федеральное государственное унитарное предприятие "Научно-производственный центр автоматики и приборостроения имени академика Н.А. Пилюгина", Москва, Россия

⁴Харбинский политехнический университет, Харбин, Китай

**E-mail: OstaninSY@mpei.ru* Поступила в редакцию 02.12.2019 г. После доработки 23.12.2019 г. Принята к публикации 27.01.2020 г.

Разрабатываются вопросы формирования физических свойств, магнитных и гистерезисных характеристик у активных магнитно-твердых материалов роторов высокоскоростных и сверхвысокоскоростных гистерезисных электромеханических преобразователей энергии. Разрабатываются научные рекомендации по технологиям изготовления роторов и по совершенствованию таких преобразователей энергии.

DOI: 10.31857/S0367676520050233

введение

Высокоскоростные и сверхвысокоскоростные электромеханические преобразователи энергии используются и перспективны для дальнейшего применения в широком спектре наукоемких областей техники и отраслей промышленности, в частности, химической, текстильной, смежных с ними и других инновационных отраслей. Объективно в качестве таких преобразователей, в частности, в системах электроприводов, эффективны гистерезисные электромеханические преобразователи энергии, в электроприводе – в режиме гистерезисного электродвигателя [1, 2]. Получение и исследование магнитных и гистерезисных свойств и характеристик роторов гистерезисных электромеханических преобразователей энергии является важной задачей при создании перспективных систем на их основе.

Цель работы заключалась в исследовании вопросов получения высоких магнитных и гистерезисных свойств и характеристик роторов высокоскоростных и сверхвысокоскоростных гистерезисных электромеханических преобразователей энергии. Для достижения поставленной цели решались следующие основные задачи:

• исследование магнитных и механических свойств магнитно-твердых сплавов Fe–Cr–Co, легированных молибденом и вольфрамом;

• дополнительные исследования механизма перемагничивания магнитно-твердых Fe-Cr-Co сплавов путем вращения магнитных моментов – векторов намагничивания однодоменных сильномагнитных частиц α1-фазы;

• разработка научных рекомендаций по упрощению технологий изготовления роторов гистерезисных электродвигателей и по использованию результатов для совершенствования гистерезисных электродвигателей.

Основное внимание было уделено материалам и сплавам системы Fe-Cr-Co, которая наиболее перспективна для активных частей – гистерезисных слоев – роторов гистерезисных электродвигателей. В качестве базовых материалов при исследованиях были выбраны два новых разработанных магнитно-твердых сплава системы Fe-Cr-Co: 30X21K3M и 30X20K2M2B. Интерес к этим сплавам связан с тем обстоятельством, что при повышении в них содержания Cr, Co и дополнительном легировании Mo и W существенно возрастает коэрцитивная сила H_c по сравнению с магнитнотвердыми Fe–Cr–Co сплавами с содержанием 22–24% Cr и 12–15% Co.

ИССЛЕДОВАНИЯ, РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ И ИХ ОБСУЖДЕНИЕ

На анизотропном сплаве 30Х21К3М получены: остаточная индукция $B_r = 1.0$ Тл, коэрцитивная сила $H_{cB} = 77.6$ кА/м и максимальное энергетическое произведение $(B \cdot H)_{\text{макс}} = 31.2$ кДж/м³, тогда как в изотропном состоянии: $B_r = 0.82$ Тл, $H_{cB} = 57.8$ кА/м и $(B \cdot H)_{\text{макс}} = 16.4$ кДж/м³. На сплаве Fe-30Cr-20Co-2Mo-2W получено максимальное значение коэрцитивной силы $H_{cB} \sim 80$ кА/м при остаточной индукции $B_r > 0.9$ Тл и максимальном энергетическом произведении $(B \cdot H)_{\text{макс}} > 30$ кДж/м³, что сравнимо с параметрами сплава ЮНДК35T5, содержащего 35% Со, при дополнительном превосходстве в несколько раз над ним по механическим свойствам.

Получены регрессионные уравнения B_r , H_{cB} и $(B \cdot H)_{\text{макс}}$ для обоих сплавов, адекватно описывающие эти величины в области варьирования используемых факторов, а также построены поверхности отклика и их сечения в фазовом пространстве факторов термической обработки. Исходя из соотношения остаточной индукции магнитного поля в анизотропном и изотропном состояниях и анализа кривых намагничивания образцов в высокоюэрцитивном состоянии, выдвинута гипотеза об уточнении модели механизма перемагничивания магнитно-твердых сплавов данного класса.

Магнитно-твердые сплавы системы Fe–Cr– Со образуют отдельный подкласс, связанный с уникальным сочетанием магнитных, гистерезисных и механических: прочностных и пластических свойств [3–7]. Только Fe–Cr–Co сплавы, в отличие от всех других магнитно-твердых материалов, поддаются всем видам обработки металлов давлением и лезвийной обработке в высококоэрцитивном состоянии и, кроме того, они превосходят все другие магнитно-твердые материалы по механическим свойствам в 8–10 раз.

В работе [6] было показано, что магнитно-твердые Fe–Cr–Co сплавы с содержанием 10–15% Со не только могут быть заменой всех существующих дорогостоящих деформируемых магнитнополутвердых сплавов типа 52К5Ф, 35КХ4Ф, содержащих 35–52% Со, традиционно использовавшихся для изготовления активных частей роторов гистерезисных электродвигателей, но и значительно упрощают технологию производства роторов таких электродвигателей и, соответственно, самих электродвигателей. Исследованные сплавы получали как традиционным методом выплавки в открытой индукционной печи с разливкой в корковые формы, в частности, сплав Fe-30Cr-21Co-3Mo, так и методом порошковой металлургии. Изучение магнитных гистерезисных свойств исследованных сплавов и оптимизацию режимов термической обработки проводили как методом однофакторного эксперимента, так и методом планирования эксперимента с построением центральных композиционных планов 23 + звездные точки [8].

Исходя из существующего представления о механизме формирования высококоэрцитивного состояния в магнитно-твердых сплавах Fe–Cr–Co [9], считают, что в общем случае, как правило, магнитные гистерезисные свойства материала или сплава зависят от следующих обстоятельств:

1) температуры закалки на α-твердый раствор;

2) температуры проведения изотермической термомагнитной обработки (ИТМО); времени проведения ИТМО;

3) времени проведения отпуска при 600° С (или скорости охлаждения от температуры ИТМО до 600° С);

4) скорости охлаждения в интервале 600-500°С.

Кроме того, влияют и другие факторы, например, скорость нагрева до температуры ИТМО, которые были по возможности стабилизированы.

При изучении анизотропных образцов в качестве нулевых (начальных) точек был выбран режим: ИТМО 640°С (30 мин) + охлаждение до 500°С со скоростью 5°С/ч с варьированием температуры ИТМО \pm 5°С (фактор A), времени ИТМО \pm 10 мин (фактор *B*), скорости охлаждения $\pm 2^{\circ}$ С/ч (фактор *C*). Для изотропных образцов нулевой режим: отпуск 620°С (2 ч) + охлаждение от температуры отпуска до 500°С со скоростью 7°С/ч с варьированием температуры отпуска $\pm 100^{\circ}$ С (фактор A), времени отпуска ± 1 ч (фактор *B*), скорости охлаждения $\pm 2^{\circ}$ С/ч (фактор C). Результаты проведенных экспериментов совместно с матрицей планирования для анизотропных и изотропных образцов сплавов приведены в табл. 1.

Статистический анализ данных табл. 1 дает возможность получить аналитические зависимости в виде регрессионных уравнений остаточной индукции B_r , коэрцитивной силы H_{cB} и максимального энергетического произведения $(B \cdot H)_{\text{макс}}$ от выбранных факторов варьирования.

На рис. 1 приведены стандартизованные диаграммы Парето, которые позволяют оценить статистическую значимость коэффициентов уравнений регрессии. Необходимо отметить, что указанные коэффициенты статистически значимы, когда вертикальная линия на диаграмме пересе-

ФОРМИРОВАНИЕ И ИССЛЕДОВАНИЕ ФИЗИЧЕСКИХ СВОЙСТВ

№№ пп.	Температура ИТМО, °С	Время ИТМО, мин	Скорость охлаждения, °С/час	<i>В</i> , Тл	<i>H_{cB}</i> , кА/м	(<i>B</i> · <i>H</i>) _{макс} , кДж/м ³	Структура
1	645 (1)	20 (-1)	7 (1)	0.93	79.60	29.00	Анизотропная
2	640 (0)	30 (0)	8.36 (1.68)	0.96	57.00	24.10	Анизотропная
3	648.4 (1.68)	30 (0)	5 (0)	0.94	71.60	27.15	Анизотропная
4	635 (-1)	40 (1)	3 (-1)	0.98	68.10	31.20	Анизотропная
5	646 (1)	40 (1)	3 (-1)	0.91	71.10	26.10	Анизотропная
6	640 (0)	30 (0)	5 (0)	1.01	60.80	33.50	Анизотропная
7	640 (0)	13.2(-1.68)	5 (0)	1.02	58.40	28.60	Анизотропная
8	640 (0)	30 (0)	1.64 (-1.68)	0.95	67.20	29.60	Анизотропная
9	635 (-1)	20 (-1)	3 (-1)	1.01	54.00	29.35	Анизотропная
10	640 (0)	30 (0)	5 (0)	0.98	58.60	28.10	Анизотропная
11	640 (0)	30 (0)	5 (0)	0.96	70.85	28.35	Анизотропная
12	640 (0)	56.8 (1.68)	5 (0)	0.93	73.00	27.10	Анизотропная
13	623.2 (-1.68)	30 (0)	5 (0)	0.96	65.85	27.90	Анизотропная
14	645 (1)	20 (-1)	3 (-1)	0.86	48.70	17.86	Анизотропная
15	635 (-1)	40 (1)	7 (1)	0.97	63.10	30.10	Анизотропная
16	635 (-1)	20 (-1)	7 (1)	1.00	46.90	24.70	Анизотропная
17	645 (1)	40 (1)	7 (1)	0.95	77.65	29.60	Анизотропная
18	640 (0)	30 (0)	5 (0)	0.95	74.20	26.70	Анизотропная
19	630 (1)	1 (-1)	9 (1)	0.69	54.50	11.90	Изотропная
20	620 (0)	2 (0)	10.36 (1.68)	0.79	57.60	15.75	Изотропная
21	636.8 (1.68)	2 (0)	7 (0)	0.46	32.90	4.40	Изотропная
22	610 (-1)	3 (1)	5 (-1)	0.82	53.20	16.84	Изотропная
23	630 (1)	3 (1)	5 (-1)	0.66	49.10	10.50	Изотропная
24	620 (0)	2 (0)	7 (0)	0.77	55.10	14.55	Изотропная
25	620 (0)	0.32(-1.68)	7 (0)	0.83	53.40	16.70	Изотропная
26	620 (0)	2 (0)	3.64 (-1.68)	0.68	54.50	12.56	Изотропная
27	610 (-1)	1 (-1)	5 (-1)	0.81	40.80	16.40	Изотропная
28	620 (0)	2 (0)	7 (0)	0.81	51.50	15.30	Изотропная
29	620 (0)	2 (0)	7 (0)	0.81	52.20	15.70	Изотропная
30	620 (0)	3.68 (1.68)	7 (0)	0.79	57.80	15.75	Изотропная
31	603.2 (-1.68)	2 (0)	7 (0)	0.82	26.80	11.60	Изотропная
32	630 (1)	1 (-1)	5 (-1)	0.71	53.40	12.10	Изотропная
33	610 (-1)	3 (1)	9 (1)	0.81	42.10	12.30	Изотропная
34	610 (-1)	1 (-1)	9 (1)	0.81	40.80	16.4	Изотропная
35	630 (1)	3 (1)	9 (1)	0.70	50.10	11.10	Изотропная
36	620 (0)	2 (0)	7 (0)	0.80	54.90	16.40	Изотропная

2020

Таблица 1. Магнитные гистерезисные свойства образцов сплава Fe-30Cr-21Co3Mo

Рис. 1. Стандартизованные диаграммы Парето анизотропного сплава 30X21K3M: a - для остаточной индукции $B_{r}, \delta - для$ коэрцитивной силы по индукции $H_{cB}, \delta - для$ максимального энергетического произведения ($B \cdot H$)_{макс} (θ).

кает столбчатое изображение соответствующего коэффициента.

Из приведенных стандартизованных диаграмм видно, что остаточная индукция *B_r* описывается линейным уравнением следующего вида

$$B_r = 0.98 - 0.05A. \tag{1}$$

Здесь свободный член дает среднее значение индукции *B_r* сплава в анизотропном состоянии в выбранных пределах варьирования факторов.

Из диаграммы Парето следует: в уравнении регрессии коэрцитивной силы H_{cB} статистически значимым оказывается квадратичный член AC:

$$H_{cB} = 63.7 + 5.5B + 6.2AC. \tag{2}$$

Рис. 2. Оценка поверхностей отклика анизотропного сплава 30X21K3M и их сечения: *a* – остаточной индукции B_{r}, δ – коэрцитивной силы H_{cB}, δ – максимального энергетического произведения ($B \cdot H$)_{макс} (s) (фактор C = 0).

Диаграмма Парето для максимального энергетического произведения $(B \cdot H)_{\text{макс}}$ показывает, что оно не зависит от факторов варьирования:

$$(B \cdot H)_{\text{макс}} = 30.4 \text{ (среднее значение).}$$
 (3)

Полезную и наглядную информацию с технологической точки зрения дает вид поверхностей отклика в фазовом пространстве варьируемых факторов и особенно сечения этих поверхностей. На рис. 2 приведены поверхности отклика для величин B_r , H_{cB} и $(B \cdot H)_{\text{макс}}$ с соответствующими сечениями для анизотропного сплава 30Х21К3М. Следует заметить, что величина B_r изотропных образцов, равная 0.8 Тл, примерно на 30% превышает величину B_r , которая должна быть 0.5 Тл согласно модели Стонера–Вольфарта [10].

ЗАКЛЮЧЕНИЕ

Проведенными исследованиями установлено, что разработанные два новых магнитнотвердых сплава системы Fe–Cr–Co: 30X21K3M и 30X20K2M2B, обладают высокими значениями коэрцитивной силы по индукции (свыше 70 кА/м), превосходя по этому показателю широко используемые сплавы ЮНДК и практически не уступая им по другим магнитным гистерезисным свойствам.

Механизм перемагничивания магнитно-твердых Fe–Cr–Co сплавов путем вращения магнитных моментов однодоменных сильномагнитных частиц σ 1-фазы, обогащенных Fe и Co, не так очевиден, как считается в настоящее время. Вопрос о механизме влияния внешнего магнитного поля и о процессе формирования магнитных гистерезисных свойств в Fe–Cr–Co сплавах требует дополнительных расчетно-теоретических и экспериментальных исследований.

По своим механическим свойствам, по прочности (свыше 1000 МПа) и, главное, по технологичности, то есть способности подвергаться разным видам обработки металлов давлением и лезвийной обработке, разработанные новые магнитно-твердые Fe—Cr—Co сплавы на порядок превосходят сплавы ЮНДК.

Исследование выполнено при финансовой поддержке РФФИ и ГФЕН Китая в рамках научного проекта № 19-58-53025 ГФЕН-а и № 18-58-53047 ГФЕН-а.

СПИСОК ЛИТЕРАТУРЫ

- 1. Делекторский Б.А., Тарасов В.Н. Управляемый гистерезисный электропривод. М.: Энергоатомиздат, 1983. 128 с.
- 2. Тарасов В.Н., Останин С.Ю. // Докл. IX выставки "HiTech" (Санкт-Петербург, 2004). С. 127.

- 3. *Kaneko H., Homma M., Nakamura K. //* AIP Conf. Proc. 1972. № 5. P. 1088.
- 4. *Кавалерова Л.А., Миляев И.М., Михеев Н.И. //* Приб. сист. упр. 1976. № 6. С. 48.
- 5. ГОСТ 24897-81. Материалы магнитотвердые деформируемые. Марки, технические требования и методы контроля.
- 6. Никаноров В.Б., Селезнёв А.П., Яковлев Б.А., Миляев И.М. // Труды МЭИ. 1985. № 67. С. 109.
- 7. *Kaneko H., Inoue K.* Magnetic alloys. US Patent № 3806336, cl. C22c39/16, H01f 1/00. 1974.
- 8. *Налимов В.В., Чернова Н.А.* Статистические методы планирования экстремальных экспериментов. М.: Наука, 1965. 340 с.
- 9. *Миляев И.М., Миляев А.И., Юсупов В.С.* // Металлы. 2009. № 3. С. 83.
- Stoner E.C., Wohlfarth C.P. // Phil. Trans. Roy. Soc. 1948. V. A240. P. 599.