УДК 533.951

НИЗКОЧАСТОТНЫЕ ВИСТЛЕРЫ, СОЗДАВАЕМЫЕ СГУСТКАМИ ЛАЗЕРНОЙ ПЛАЗМЫ В ЗАМАГНИЧЕННОЙ ПЛАЗМЕ

© 2020 г. А. Г. Березуцкий^{1,} *, М. А. Ефимов^{1, 2}, Ю. П. Захаров¹, И. Б. Мирошниченко^{1, 2}, А. Г. Пономаренко¹, В. Г. Посух¹, В. Н. Тищенко¹, А. А. Чибранов^{1, 2}, И. Ф. Шайхисламов^{1, 2}

¹Федеральное государственное бюджетное учреждение науки Институт лазерной физики Сибирского отделения Российской академии наук, Новосибирск, Россия

²Федеральное государственное автономное образовательное учреждение высшего образования

"Новосибирский государственный технический университет", Новосибирск, Россия

**E-mail: a.berezuckiy@yandex.ru* Поступила в редакцию 14.02.2020 г. После доработки 16.03.2020 г. Принята к публикации 27.03.2020 г.

С использованием сгустков лазерной плазмы впервые осуществлена генерация интенсивных низкочастотных вистлеров, магнитное поле которых достигало ~25% от внешнего магнитного поля.

DOI: 10.31857/S0367676520070066

ВВЕДЕНИЕ

Низкочастотные волны используются для зондирования атмосферы и ионосферы. Интенсивность и длина волн, создаваемых традиционными способами, ограничена низкой эффективностью методов амплитудной модуляции и генерации разностной частоты, и/или большими размерами антенн излучателей (РЛС "Goliath", стенд HAARP и др.).

Энергетически эффективный метод возбуждения интенсивных низкочастотных волн (НЧ) в атмосфере и в космосе предложен на основе лабораторных экспериментов и расчетов на суперкомпьютерах [1–4]. Цуг периодических сгустков взрывного типа создает ударные волны, которые при определенной частоте ω₀ повторения сгустков, зависящей от их энергии и свойств окружающей среды формируют НЧ волну, ее длина линейно зависит от количества сгустков. При $\omega \ll \omega_0$ волны не взаимодействуют между собой, а при $\omega \gg \omega_0$ — длина результирующей волны слабо зависит от суммарной энергии сгустков. Сгустки последовательно создаются в фиксированной точке или на линии с интервалом ~1/ω₀. Например, оптическими пробоями в неподвижном или движущемся фокусе импульсно-периодического лазерного излучения [9], где точечные ~0.5 см сгустки генерировали инфра- ультразвук.

В замагниченной плазме (далее — фон) ω_0 дополняется набором безразмерных параметров [3, 4], при выполнении которых большая часть энергии сгустков закачивается в магнитную силовую трубку в виде потока плазмы сгустков и НЧ волн: крутильная Альфвеновская переносит момент импульса вращающейся плазмы фона, медленная магнитозвуковая волна – продольный импульс сжатой плазмы фона. Или, как показано в расчетах, в силовой трубке возбуждаются интенсивные НЧ вистлеры [5]. Волны имеют уникальные характеристики: амплитуда магнитных полей достигает ~30% от величины внешнего магнитного поля В₀, энергия волнового пакета ~50% от энергии сгустков, распространение на большое расстояние практически без затухания, большая длина волн вдоль В₀, значительно превышающая размер поперек магнитного поля. Для сравнения, на установке LAPD применялся только один сгусток лазерной плазмы для возбуждения Альфвеновской волны, а медленная магнитозвуковая волна вообще не рассматривалась [6].

Альфвеновские, медленные магнитозвуковые волны и вистлерные волны возбуждаются на стадии взрывного расширения сгустков в результате действия сил Лоренца. Тип генерируемых волн определяется ионно-плазменной длиной L_{pi} , нормированной на динамический радиус сгустка R_d :

$$L_{pi} = c/(2\pi f_{pi}R_d) = 3.61 \cdot 10^4 Z_0^{-1} \times \sqrt{m_0 [\text{a.e.m.}]/n_0 [\text{cm}^{-3}]^3} \sqrt{B_0^2 (1+\beta_0)/Q [\text{Дж}]}.$$
 (1)

 $R_d [c_M] = (8\pi \cdot Q [Д_{\mathcal{K}}] / B_0^2 (1 + \beta_0))^{1/3} \approx 630 (Q / B_0^2 (1 + \beta_0))^{1/3}$ – характеризует размер, на котором плотность энергии лазерной плазмы сравнивается с

Рис. 1. Схема эксперимента: 1 – вакуумная камера, 2 – поток плазмы, создаваемый θ -пинчом (3), 4 – витки соленоида, создающего внешнее магнитное поле, аксиальное оси камеры, 5 – излучение CO₂-лазера, 6 – мишень, 7 – фокусирующие линзы, 8 – измерительные зонды, размещенные в различных местах камеры, 9 – поток лазерной плазмы.

плотностью энергии фона. В (1) ионно-плазменная частота $-f_{pi}$ [Гц] = $210Z_0(n_0/m_0)^{1/2}$, $c = 3 \cdot 10^{10}$ см \cdot с⁻¹, Q – энергия сгустка, $\beta_0 \sim 0.1 - 1$ – отношение давления плазмы к давлению магнитного поля В₀ фона, m_0 и Z_0 – масса и заряд ионов фона, n_0 – концентрация плазмы. Сгустки возбуждают следующие типы волн: в диапазоне $L_{pi} \sim 0.05 - 0.25 - 0.05$ Альфвеновскую и медленную магнитозвуковую волны [1-3]; L_{ni} ~ 0.25-0.4 - соответствует переходному режиму генерации, формируются одновременно Альфвеновская волна и слабые вистлеры [7]. В настоящем эксперименте впервые реализованы условия $L_{pi} > 0.6$, при которых Альфвеновская и медленная магнитозвуковая волны не возбуждаются, энергия сгустков отводится на генерацию интенсивных вистлеров, в которых отношение магнитного поля вистлеров к B_0 равно $B_W \sim 0.15 - 0.3$.

РЕЗУЛЬТАТЫ

На рис. 1 показана схема эксперимента на стенде КИ-1. В камере размером 5 × 1.2 м в вакууме ~2 · 10⁻⁶ торр. создавалось аксиальное оси магнитное поле величиной до 300 Гс. Импульсный индукционный источник (θ -пинч) создавал поток аргоновой или гелиевой плазмы, который распространялся со скоростью ~ $1.2 \cdot 10^6$ или ~ $3 \cdot 10^6$ см \cdot с⁻¹ соответственно и заполнял всю приосевую область камеры радиусом ~30 см. Сгустки лазерной плазмы создавались посредством облучения полиэтиленовой мишени излучением одного CO₂-лазера с параметрами: энергия импульсов ~200 Дж, длительность ~1 мкс, фокусное пятно на мишени 2.5 см, плотность энергии на мишени ~40 Дж · см⁻², энергия, перешедшая в плазму $Q \sim 20$ Дж, начальная температура плазмы ~50 эВ.

Луч лазера предварительно делился на две части, которые симметрично фокусировались на мишень и создавали поток плазмы с высокой степенью цилиндрической симметрии, что позволяло формировать крутильные волны. В эксперименте варьировались такие параметры фоновой плазмы как магнитное поле $B_0 \approx 50-300$ Гс и концентрация $n_0 \sim 10^{12} - 3 \cdot 10^{13}$ см⁻³, а также масса ионов (гелий или аргон). Типичная температура ионов фона составляла T₀ ~ 10 эВ. Измерялись следующие величины: продольная, азимутальная и радиальная компоненты магнитного поля, концентрация плазмы n(t) продольный ток J_Z (пояс Роговского), радиальное электрическое поле. Регистрировалась энергия и форма лазерных импульсов. Измерения проводились на расстоянии z = 87 - 250 см от облучаемой мишени, что соответствует ближней зоне распространение волн $z/R_d < 5.$

Цель настоящего эксперимента состояла в демонстрации предельного режима возбуждения волн, когда лазерные сгустки генерируют только вистлеры большой амплитуды — отношение магнитных полей вистлеров и фона $B_W > 0.1$. В условиях эксперимента с гелиевым фоном реализуется переходной режим. Для аргонового фона были достигнуты значения $L_{pi} \sim 0.5-2$, и наблюдались только вистлеры.

На рис. 2 представлен типичные сигналы, зарегистрированные на расстоянии z = 140 см от мишени. В момент облучения мишени и создания лазерной плазмы (t = 0), концентрация плазмы фона равна $n_0 \sim 1.6 \cdot 10^{12}$ см⁻³, что соответствует значению безразмерного параметра $L_{pi} \sim 1.8$. Начиная с момента времени t = 6 мкс датчик регистрирует суммарную концентрацию плазмы фона n₀ и потока лазерной плазмы, которая распространяется со скоростью ~200 км · с⁻¹ вдоль магнитной силовой трубки. На рис. 26 показано азимутальное магнитное поле B_{φ} , измеренное со смещением по радиусу от оси симметрии на расстояние r = 10 см, где компонента B_{ϕ} максимальна (см. ниже). Фурье-спектр компоненты B_{0} , приведен на рис. 2в. Отметим, магнитное поле вистлеров B_W много больше, чем в переходном режиме генерации сгустками лазерной плазмы [7] и при формировании вистлеров радиоволновыми методами [8].

Представленные сигналы соответствуют основным признакам вистлера: правосторонняя поляризация (см. вставку на рис. 26) и характерная частота, которая находится в вистлерном диапазоне $(f_{ci}f_{ce})^{1/2} < f < f_{ce} \ll f_{pe}$. Нижняя F_1 и верхняя F_1 границы диапазона равны:

$$F_1[\mathbf{M}\Gamma\mathbf{u}] = (f_{ci}f_{ce})^{1/2} = 0.164B_0\sqrt{Z/m_0}, \qquad (2)$$

$$F_2 \equiv f_{ce} \left[\mathsf{M} \Gamma \mathfrak{U} \right] = e B_0 \left[\Gamma \mathsf{c} \right] / m_e = 2.8 B_0. \tag{3}$$

Здесь f_{ce} — циклотронная частота электронов, $f_{ci} = 1.53 \cdot 10^{-3} Z_0 B_0 / m_0$ — циклотронная частота

Рис. 2. Изменение во времени концентрации плазмы (*a*) и азимутальной компоненты магнитного поля $B_{\varphi}(\delta)$. Панель *в* показывает частотный спектр компоненты $B_{\varphi}(t)$ в интервале t = 0-20 мкс. Вставка в панели δ показывает годограф поперечных компонент поля B_r-B_{φ} . Время t = 0 соответствует моменту облучения мишени лазерным импульсом. Внешнее магнитное поле $B_0 = 100$ Гс, концентрация фоновой плазмы Ar⁺ составляет $n_0 \sim 1.6 \cdot 10^{12}$ см⁻³. Расстояние от мишени до точки регистрации равно z = 140 см.

Рис. 3. Зависимость скорости распространения возмущения V_w и относительной амплитуды B_{ϕ}/B_0 от величины внешнего магнитного поля B_0 , измеренная на расстоянии z = 140 см от мишени.

ионов, f_{pe} [МГц] = 9 · 10⁻³ $(n_0$ [см⁻³])^{1/2} – плазменная частота электронов. Для рис. 2 частоты равны: F_1 = 2.6 МГц, F_2 = 280 МГц, f_{pe} = 1300 МГц и $f \sim 3$ МГц.

В аргоновом фоне с большими значениями L_{pi} сгустки не создавали Альфвеновскую и медленную магнитозвуковую волны. Вплоть до времени измерения $t \sim 0.001$ с регистрировались только возмущения, распространяющиеся вдоль магнитного поля со скоростями, много большими как скорости Альфвеновской $V_A \sim 36$ км \cdot с⁻¹, так и медленной магнитозвуковой $V_m \sim 11$ км \cdot с⁻¹ волн. Для примера, задержка сигнала при $V_A \sim 36$ км \cdot с⁻¹ составляла бы более 40 мкс.

Зависимость амплитуды азимутальной компоненты магнитного поля B_{φ} и скорости его распространения V_w от внешнего магнитного поля в аргоне иллюстрирует рис. 3.

Максимальная амплитуда возмущения $B_{\phi}/B_0 = 0.24$ достигалась в поле $B_0 = 200$ Гс. При $B_0 = 300$ Гс, величина B_{ϕ}/B_0 резко уменьшается, что связано с увеличением концентрации фона за счет сжатия внешним магнитным полем и уменьшения параметра Холла L_{pi} . Скорость возмущений измерялась как отношение расстояния от мишени до точек регистрации к времени прихода сигналов на зонды: $V = (z_2 - z_1)/(t_2 - t_1)$. Как видно, скорость распространения составляет сотни километров в секунду. Скорость и характерная частота зарегистрированных возмущений практически линейно зависит от величины магнитного поля.

Радиальное распределение амплитуды вистлерных возмущений показано на рис. 4. Измерения проведены в сечении z = 140 см в магнитном поле $B_0 = 100$ Гс в аргоне. Возмущения имеют максимальную амплитуду на расстояниях r = 7-10 см от оси камеры. Следует отметить, что концентрация фона по мере удаления от оси эксперимен-

Рис. 4. Радиальное распределение максимальной по времени амплитуды возмущения B_{ϕ}/B_0 . Измерения сделаны в сечении z = 140 см при величине внешнего магнитного поля $B_0 = 100$ Гс.

тальной камеры не была постоянной и изменялась в диапазоне $n_0 = 5 \cdot 10^{12} - 10^{12} \text{ см}^{-3}$.

ЗАКЛЮЧЕНИЕ

Сгустки лазерной плазмы возбуждают интенсивные вистлеры, если длина ионно-плазменных колебаний в замагниченной плазме фона превышает половину характерного радиуса R_d расширения сгустка. Условие генерации интенсивных вистлеров позволяет определить энергию сгустков в зависимости от параметров фона. При этом необходимо учитывать, что начальная скорость разлета плазмы сгустков должна превышать скорость Альфвеновских волн в фоне.

Работа выполнена в рамках государственного задания Министерства науки и высшего образо-

вания Российской Федерации (тема № АААА-А17-117021750017-0), при финансовой поддержке РНФ (проект № 18-12-00080) и РФФИ (проекты №№ 18-29-21018мк, 18-32-00029, 18-42-543019). Обоснование эксперимента выполнено с использованием расчетов на суперкомпьютерах МГУ, ССКЦ СО РАН, НГУ и Межведомственного суперкомпьютерного центра РАН.

СПИСОК ЛИТЕРАТУРЫ

- 1. Тищенко В.Н., Шайхисламов И.Ф. // Квант. электрон. 2010. Т. 40. № 5. С. 464; Tishchenko V.N., Shaikhislamov I.F. // Quant. Electron. 2010. V. 40. № 5. Р. 464.
- 2. Тищенко В.Н., Шайхисламов И.Ф. // Квант. электрон. 2014. Т. 44. № 2. С. 98; Tishchenko V.N., Shaikhislamov I.F. // Quant. Electron. 2014. V. 44. № 2. Р. 98.
- 3. Тищенко В.Н., Захаров Ю.П., Шайхисламов И.Ф. и др. // Письма в ЖЭТФ. 2016. Т. 104. № 5. С. 303; Tishchenko V.N., Zakharov Yu.P., Shaikhislamov I.F. et al. // JETP Lett. 2016. V. 104. № 5. Р. 293.
- Тищенко В.Н., Березуцкий А.Г., Бояринцев Э.Л. и др. // Квант. электрон. 2017. Т. 47. № 9. С. 849; Tishchenko V.N., Berezutskiy A.G., Boyarintsev E.L. et al. // Quant. Electron. 2017. V. 47. № 9. Р. 849.
- 5. *Tischenko V.N., Berezutsky A.G., Boyarintsev E.L. et al.* // AIP Conf. Proc. 2019. V. 2098. № 1. Art. № 020014.
- 6. Niemann C., Gekelman W., Constantin C.G. et al. // Phys. Plasmas. 2013. V. 20. № 1. Art. № 012108.
- 7. Прокопов П.А., Захаров Ю.П., Тищенко В.Н. и др. // Солн.-земн. физ. 2016. Т. 2. № 1. С. 14; Prokopov P.A., Zakharov Yu.P., Tishchenko V.N. et al. // Solar Terr. Phys. 2016. V. 2. № 1. Р. 19.
- Гущин М.Е., Коробков С.В., Костров А.В. и др. // Письма в ЖЭТФ. 2010. Т. 92. № 2. С. 89; Gushchin M.E., Korobkov S.V., Kostrov A.V. et al. // JETP Lett. 2010. V. 92. № 2. Р. 85.
- 9. Тищенко В.Н., Аполлонов В.В., Грачев Г.Н. и др. // Квант. электрон. 2004. Т. 34. № 10. С. 941; Tishchenko V.N., Apollonov V.V., Grachev G.N. et al. // Quant. Electron. 2004. V. 34. № 10. Р. 941.