УДК 535.37

ВЛИЯНИЕ ОТЖИГА НА ЛЮМИНЕСЦЕНЦИЮ ИАГ:Се И ИАГГ:Се КЕРАМИКИ, СИНТЕЗИРОВАННОЙ В ПОЛЕ РАДИАЦИИ

© 2020 г. Д. А. Мусаханов^{1,} *, А. Т. Тулегенова², В. М. Лисицын¹, М. Г. Голковский³, Ж. Т. Карипбаев⁴, А. И. Купчишин⁵, С. А. Степанов¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский политехнический университет", Томск, Россия

²Казахский национальный университет имени аль-Фараби, Алматы, Казахстан

³Федеральное государственное бюджетное учреждение науки Институт ядерной физики имени Г.И. Будкера

Сибирского отделения Российской академии наук, Новосибирск, Россия

⁴Евразийский национальный университет имени Гумилёва, Нур-Султан, Казахстан

5 Казахский национальный педагогический университет имени Абая, Алматы, Казахстан

*E-mail: Dos_f@mail.ru

Поступила в редакцию 14.02.2020 г. После доработки 16.03.2020 г. Принята к публикации 27.03.2020 г.

Синтезированы образцы ИАГ:Се керамики из шихты стехиометрического состава в поле мощного потока высокоэнергетических электронов. Полученная керамика имеет характерную для ИАГ:Се структуру, интенсивно люминесцирует при УФ возбуждении на длине волны 460 нм. Установлено, что высокотемпературный отжиг приводит к изменению цвета керамики.

DOI: 10.31857/S0367676520070200

ВВЕДЕНИЕ

Люминофоры и керамика на основе ИАГ:Се являются перспективными для использования в светодиодах (СД) [1–3], в качестве сцинтилляторов [4-6]. Большие потребности в этих материалах, широкий круг применений, большое разнообразие требований к свойствам этих материалов для разных приложений требуют разработки разнообразных технологий их синтеза. ИАГ:Се люминофоры, керамика представляют собой многокомпонентные системы. Температуры плавления компонентов – от 2455°С в У₂О₃ до 2075°С в Аl₂О₃. Синтез их осуществляется при высоких температурах, длительное время, что не позволяет обеспечить хорошую воспроизводимость и качество материалов. Поэтому продолжаются поиски и совершенствование технологий их синтеза. Кроме наиболее распространенных методов с использованием твердофазных реакций [7] разрабатываются и другие: лазерной абляции [8], золь-гель метод [9], гидротермальный [10], соосаждение [11], с использованием горения [12] и др. Одним из возможных вариантов может быть синтез керамики в поле мощных потоков радиации с дальнейшим ее преобразованием в люминофор для СД. В [13, 14] показано, что в поле потока высокоэнергетических электронов может быть синтезирована люминесцирующая керамика на основе MgF₂. В [15] показано, что в поле мошного потока электронов может быть синтезирована ИАГ:Се керамика.

В настоящей работе приведены результаты исследований люминесцентных свойств ИАГ:Се керамики, синтезированной в поле радиации, и влияния высокотемпературного термического отжига на эти свойства.

МЕТОДИКА ЭКСПЕРИМЕНТА

Были синтезированы образцы керамики разных составов с содержанием по шихте: Al₂O₃ $(43\%) + Y_2O_3 (55\%) + Ce_2O_3 (2\%)$ и Al₂O₃ (40%) + $+ Y_2O_3 (52\%) + Ce_2O_3 (2\%) + Gd_2O_3 (6\%)$. Синтезированы две серии такой керамики, различающихся предысторией использованных оксидов алюминия для синтеза: марок ЧДА и ХЧ. Порошки различались и дисперсностью состава. Синтез осуществлялся путем спекания образцов из порошков окислов в поле потока высокоэнергетических электронов. Смесь порошков насыпалась в углубления глубиной 5 мм массивного медного тигля. На тигель направлялся мощный поток электронов, выведенный из вакуума в среду с атмосферным давлением через систему дифференциальной вакуумной откачки. Поток электронов с энергией 1.4 МэВ и плотностью мощности 23 кВт · см⁻² от ускорителя ЭЛВ-6 сканировал вдоль тигля со скоростью 1 см \cdot с⁻¹. Пучок электронов с сечением у поверхности тигля 1 см² в течение 1 с плавил шихту, которая после воздействия быстро застывала, образуя керамический образец с заланным соотношением примесей. После однократного

Рис. 1. Фотографии образцов керамики до (a, b) и после (δ, c) высокотемпературного отжига.

облучения всей поверхности конструкция охлаждалась, образцы вынимались из тигля.

После исследований структуры и люминесцентных свойств образцы керамики подвергались высокотемпературной обработке при 1650°С в течение 8 ч. Затем проводились исследования отожженных образцов.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ

Синтезированные образцы представляли собой либо пластины диаметром до 3 см и толщиной около 3 мм, либо шароподобные полости диаметром до 1.5 см с толщиной стенок около 1.5 мм. Примеры фотографий образцов приведены на рис. 1. Полученные при синтезе образцы имели цвета от зеленого до желтого в зависимости от предыстории порошков оксида алюминия. На рис. 1 приведены и фотографии образцов до и после высокотемпературного отжига. Термообработка приводит к изменению их цвета. Образцы стали ярко-желтыми, некоторые с зеленоватым оттенком.

Исследовались морфология, элементный состав, структура изготовленных образцов ИАГ:Се без гадолиния и с гадолинием (далее в тексте ИАГ:Се и ИАГГ:Се, соответственно) сканирующим микроскопом Quanta3D 200i, FEICompany. В СЭМ снимках сколов видно, что образцы керамики представляют собой спаянные друг с другом частицы с размерами ~5–50 мкм. Большая часть частиц имеет вид расплава. Встречаются частицы с хорошо выраженной огранкой, что свидетельствует о формировании микрокристаллов.

Структура образцов изучалась с использованием рентгеновского дифрактометра RigakuMiniflex 600.

Рис. 2. Дифрактограммы образцов синтезированной керамики ИАГ:Се (*a*), ИАГГ:Се (*б*).

Скорость сканирования составляла 10 град/мин, ширина шага 0.02 град, U=40 кВ, I=15 мА. Обработка информации обеспечивалась с использованием встроенной программы ICDD (PDF-2 Release 2016 RDB). Результаты рентгеноструктурного анализа образцов синтезированной керамики ИАГ:Се, ИАГГ:Се представлены на рис. 2.

Обобщенные сведения о структуре образцов керамики представлены в табл. 1. Все образцы имеют пространственную группу симметрии *Ia-3d*.

Представленные на рис. 2 дифрактограммы полностью соответствуют известным для ИАГ:Се кристаллам по положению и соотношению пиков. Из представленных в таблице результатов следует, что с введением Gd³⁺ ионов Ce³⁺ имеет место увеличение параметра решетки на 0.031 Å, расчетного значения удельного веса. Этот эффект известен. Увеличение средней величины параметра решетки с введением Gd³⁺ используется для смещения полосы люминесценции, обусловленной ионами Ce³⁺, в красную область спектра [16].

Исследовались люминесцентные характеристики полученных образцов керамики: яркость, спектры люминесценции и возбуждения. Яркость измерялась с помощью яркометра CS-200 Chromameter. Результаты измерения яркости изготовленной керамики сопоставлялись с яркостью промышленных люминофоров. Такие измерения позволяли обеспечить корректную относительную оценку эффективности преобразования возбуждающего излучения от чипа с $\lambda = 460$ нм люминофором. Образцы керамики для таких измерений были раздроблены в порошок. Было показано, что яркость образцов керамики в среднем примерно в 2 раза ниже яркости промышленных люминофоров. Яркости раздробленных в порошок образцов керамики составляли 35–65 кд \cdot м $^{-2}$, люминофоров СДЛ 4000 и YAG 02 – 110 и 125 кд \cdot м $^{-2}$, соответственно. Это очень хороший результат.

Спектры люминесценции и возбуждения измерялись с помощью спектрофотометра Agilent-CaryEclipse в спектральной области от 200 до 800 нм. На рис. 3 приведен пример спектра возбуждения в максимуме основной полосы люминесценции в видимой области спектра синтезированного в поле радиации образца ИАГ:Се керамики. Заметных различий в виде спектров возбуждения всех изготовленных образцов керамики нет. Спектры подобны известным для ИАГ:Се люминофоров. В спектре выделяются две полосы с максимумами на 340 и 460 нм, доминирующей является полоса на 460 нм. Отметим, что в спектре возбуждения имеет место рост эффективности люминесценции в диапазоне от 300 до 200 нм.

На рис. 4 приведены измеренные спектрофотометром AvaSpec-2048 спектры люминесценции раздробленных образцов синтезированной керамики при возбуждении излучением чипа на 460 нм. В верхней части рисунка приведены результаты измерений спектров ИАГ:Се керамики, в нижней – и ИАГГ:Се. В левой части рисунка приведены результаты исследований спектров люминесценции образцов до, в правой – после отжига при 1650°С. Положения полос люминесценции ИАГ:Се керамики приходятся на диапазон от 535 до 555 нм, ИАГГ:Се керамики – на 550–575 нм. Полуширины полос люминесценции образцов до и после отжига не изменялись.

Положения полос люминесценции образцов ИАГ:Се керамики при возбуждении излучением чипа на 365 нм до отжига приходятся на диапазон от 535 до 565 нм, после — все на 545 нм. Полуширины полос люминесценции образцов до и после отжига не изменялись. Таким образом, при некоторых способах возбуждения можно обнаружить влияние последующего после синтеза отжига на спектральные характеристики люминесценции.

ОБСУЖДЕНИЕ

Показано, что воздействие мощных потоков энергии жесткой радиации может быть использовано для синтеза высокотемпературной керамики на основе ИАГ:Се. Синтезированные образцы имеют характерные для керамики свойства. Ке-

Рис. 3. Спектр возбуждения люминесценции в максимуме ее полосы.

рамика представляет собою слипшиеся частицы с размерами 1—30 мкм. Часть частиц имеет явно выраженные плоскости, характерные для кристаллов. Рентгеноструктурный анализ показал, что в образцах керамики доминирующей является кристаллическая ИАГ:Се фаза. Введение в качестве модификатора ионов гадолиния приводит к увеличению параметра решетки этой фазы. Кристаллиты в керамике имеют размеры от 47 до 81 нм.

Показано, что полученная керамика хорошо люминесцирует при УФ возбуждении. УФ возбуждение керамики инициирует люминесценцию в области 500—750 нм с максимумом на 540—570 нм. В спектре возбуждения наблюдаются две полосы на 340 и 460 нм, характерные для ИАГ:Се люминофоров, и широкий сплошной спектр в диапазоне 300—200 нм. Характеристики люминесценции и возбуждения синтезированной в поле радиации керамики хорошо соответствуют известным для ИАГ:Се и ИАГГ:Се люминофоров, синтезированных традиционными методами.

Синтез керамики в поле потоков радиации принципиально отличается от используемых в настоящее время методов. Основным действующим фактором при синтезе в поле радиации является высокая плотность ионизации, но не температура. Синтез проводится в течение 1 с, по-

Таблица 1. Результаты XRD анализа YAG и YAGG люминофоров

Образец	Название фазы	Параметры решетки (<i>a</i> , <i>b</i> , <i>c</i>), Å	Плотность, г \cdot см ⁻³	Размер кристаллитов, Å
ИАГ:Се	Y ₃ Al ₅ O ₁₂ :Ce	a = 12.0234 b = 12.0234 c = 12.0234	5.61	472.4
ИАГГ:Се	Y ₂ GdAl ₅ O ₁₂	a = 12.0546 b = 12.0546 c = 12.0546	5.02	813.2

Рис. 4. Спектры люминесценция образцов ИАГ:Се (a, δ) и ИАГГ:Се (e, c) до (a, b) и после (δ, c) отжига при возбуждении на 450 нм.

этому полученная керамика имеет не полностью сформировавшуюся структуру. Нужна, по-видимому, термическая обработка синтезированных образцов. Из представленных результатов исследований видно, что спектральные характеристики люминесценции керамики не зависят существенно от отжига при температуре 1650°С в течение 8 ч. Однако отжиг приводит к изменению цвета образцов керамики. Это означает, что излучательные комплексы с центрами свечения в них формируются уже в процессе синтеза. Высокотемпературный отжиг не влияет на структуру созданных комплексов, но, вероятно, способствует изменению их количества. Необходимо установить величину количественного изменения формирующихся комплексов при отжиге, чему будут посвящены последующие исследования.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Narukawa Y., Ichikawa M., Sanga D. et al.* // J. Phys. D. 2010. V. 43. № 35. Art. № 354002.
- George N.C., Denault K.A., Seshadri R. // Annu. Rev. Mater. Res. 2013. V. 43. P. 481.
- Ye S., Xiao F., Pan Y.X. // Mater. Sci. Eng. Rep. 2010.
 V. 71. P. 1.

- Yoshikawa A., Kamada K., Kurosawa S.M. et al. // J. Lumin. 2016. V. 169. P. 387.
- Osipov V.V., Ishchenko A.V., Shitov V.A. et al. // Opt. Mater. 2017. V. 71. P. 98.
- 6. *Kucera M., Nikl M., Hanus M., Onderisinova Z.* // Phys. Stat. Sol. RRL. 2013. V. 7. № 8. P. 571.
- 7. *Ye S., Xiao F., Pan Y.X. et al.* // Mater. Sci. Eng. Rep. 2010. V. 71. № 1. P. 1.
- 8. Choe J.Y. // Mater. Res. Innovat. 2002. V. 6. P. 238.
- 9. Murai S., Fujita K., Iwata K., Tanaka K. // J. Phys. Chem. C. 2011. V. 115. № 36. P. 17676.
- 10. Hakuta Y., Haganuma T., Sue K. et al. // Mater. Res. Bull. 2003. V. 38. № 7. P. 1257.
- 11. *Mech A., Karbowiak M., Kepinski L. et al.* // J. Alloys Compd. 2004. V. 380. № 1-2. P. 315.
- 12. *Huczko A., Kurcz M., Baranowski P. et al.* // Phys. Stat. Sol. B. 2013. V. 250. № 12. P. 2702.
- 13. Lisitsyn V., Lisitsyna L., Dauletbekova A. et al. // Nucl. Instrum. Meth. Phys. Res. B. 2018. V. 435. P. 263.
- 14. Лисицын В.М., Голковский М.Г., Лисицына Л.А. и др. // Изв. вузов. Физ. 2018. Т. 61. № 10. С. 144; Lisitsyn V.M., Golkovskii M.G., Lisitsyna L.A. et al. // Russ. Phys. J. 2019. V. 61. № 10. Р. 1908.
- Lisitsyn V.M., Golkovsky M.G., Musakhanov D.A. et al. // J. Phys. Conf. Ser. 2018. V. 1115. № 5. Art. № 052007.
- Shi H., Zhu C., Huang J. et al. // Opt. Mater. Expr. 2014. V. 4. № 4. P. 649.