УДК 539.125.5:621.039.556:539.12...162.2:543.522

ИЗУЧЕНИЕ РАСПРЕДЕЛЕНИЯ ТЕПЛОВЫХ НЕЙТРОНОВ ИЗ ВЫВОДНОГО КАНАЛА W-Be ФОТОНЕЙТРОННОГО ИСТОЧНИКА

© 2020 г. А. А. Афонин^{1,} *, С. В. Зуев¹, Е. С. Конобеевский^{1, 2}, М. В. Мордовской^{1, 2}, В. Н. Пономарев¹, Г. В. Солодухов¹

¹Федеральное государственное бюджетное учреждение науки "Институт ядерных исследований Российской академии наук", Москва, Россия ²Федеральное государственное автономное образовательное учреждение высшего образования "Московский физико-технический институт (государственный университет)", Москва, Россия

**E-mail: afonin@inr.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Измерены распределения плотности потока тепловых нейтронов относительно центра W-Be-фотонейтронного источника и оси выводного нейтронного канала. Измерения проводились с использованием активационных детекторов. Распределения аппроксимированы простыми функциями, параметры которых зависят от координат детекторов. Получено пространственное распределение тепловых нейтронов в горизонтальной плоскости относительно оси выводного канала фотонейтронного источника.

DOI: 10.31857/S0367676520080037

введение

Созданный на базе линейного ускорителя электронов W-Be-фотонейтронный источник нейтронов [1-3] обеспечивает облучение различных образцов во внутренней полости источника с максимальной плотностью потока тепловых нейтронов $10^7 - 10^8$ см⁻² · с⁻¹. При этом спектр нейтронов имеет сложный характер и содержит кроме тепловых, также нейтроны больших энергий [3]. Для ряда задач необходимо иметь возможность вывода из источника пучка нейтронов различных энергий. Ранее в работе [2] нами была показана принципиальная возможность получения пучка тепловых нейтронов из фотонейтронного источника и исследованы некоторые его характеристики. Цель настоящей работы – подробное исследование пространственного распределения тепловых нейтронов вблизи выхода нейтронного канала фотонейтронного источника.

НЕЙТРОННО-АКТИВАЦИОННЫЙ МЕТОД ИЗМЕРЕНИЙ

Для определения плотности потока нейтронов использовался метод нейтронно-активационного анализа (HAA) [4]. В рамках НАА площадь *S* пика в гамма-спектре активированного нейтронами образца представляется в виде:

$$S = KE(t_1, t_2, t_3)J,$$
 (1)

где K — коэффициент, зависящий от экспериментальных условий и характеристик активационного детектора; J — интеграл свертки (скорость реакции):

$$J = \int_{0}^{\infty} \sigma(E) \phi(E) dE; \qquad (2)$$

 $\sigma(E)$ — сечение активирующей ядерной реакции в зависимости от энергии нейтронов *E*; $\varphi(E)$ — спектральная плотность потока нейтронов;

$$E(t_1, t_2, t_3) = (1 - e^{-\lambda t_1})e^{-\lambda t_2}(1 - e^{-\lambda t_3});$$
(3)

 λ — постоянная радиоактивного распада аналитического изотопа элемента, t_1 — время активации; t_2 — время выдержки после облучения; t_3 — время измерения.

Интеграл свертки (2) может быть представлен в виде суммы *m* произведений величин сечения $\sigma(E_j)$ и плотности потока нейтронов $\Phi(E_j)$ – средних на *m* элементарных энергетических участках E_j шириной ΔE_j . Учитывая, что спектральная плотность потока нейтронов на участке ΔE_j равна: $\varphi(E_j) = \Phi(E_j)/\Delta E_j$, интеграл свертки представляем в виде суммы:

$$J = \sum_{j=0}^{m} \sigma(E_j) \Phi(E_j).$$
(4)

Рис. 1. Энергетическая зависимость сечения реакции захвата ⁵⁵Mn (n, γ)⁵⁶Mn [5] (a); модельный энергетический спектр (плотность потока Φ) нейтронов [3] на выходе нейтронного канала фотонейтронного источника и разбивка его на три области: область тепловых (1), промежуточных (2) и быстрых нейтронов (3) (δ); суммы сечения (e) и интегралы свертки (e) для областей 1-3 спектра на рис. 1 δ .

При выборе активационного детектора мы воспользовались методикой, изложенной нами в работе [6]. Она заключается в том, что для НАА используются детекторы, имеющие избирательную чувствительность к нейтронам различных энергий с учетом характерных особенностей исследуемого спектра. На рис. 1а показана энергетическая зависимость сечения реакции захвата (n, γ) на ядре ⁵⁵Mn [5] и модельный энергетический спектр нейтронов (рис. 16) [3] на выходе нейтронного канала источника. Спектр на рис. 16 можно условно разбить на три области: 1 – "тепловых" (10⁻² – 1 эВ), 2 – "промежуточных" (1 эВ– 10 кэВ) и *3* – "быстрых" (более 10 кэВ) нейтронов. Здесь обозначение областей условное. Видно, что и сечение, и спектр имеют характерные особенности в разных участках энергетической зависимости. На рис. 1 также показаны суммы сечения (рис. 1*в*) и интеграл свертки (4) (рис. 1*г*) для областей 1-3 спектра на рис. 16. Для ⁵⁵Мп видно, что, хотя вклады в сечение тепловой и промежуточных частей спектра существенны, но в интеграл свертки дает вклад только тепловая область.

В этом случае в сумме (4) остаются только члены из тепловой области и сумму можно заменить произведением средних величин по этой области:

$$J = \sigma_{\rm T} \Phi_{\rm T}, \tag{5}$$

где $\sigma_{\rm T}$ — сечение активирующей ядерной реакции при тепловой энергии нейтронов $E_{\rm T} = 0.025$ эВ; $\Phi_{\rm T}$ — плотность потока тепловых нейтронов.

Зная значение σ_T для реакции в активационном детекторе, можно из результатов измерений гамма-спектров активированного нейтронами детектора (1) получить значение плотности потока тепловых нейтронов Φ_T :

$$\Phi_{\rm T} = S/KE(t_1, t_2, t_3)\sigma_{\rm T}.$$
 (6)

Анализ [6] для реакций захвата на разных ядрах показал, что можно подобрать ряд элементов для использования в качестве активационных детекторов, которые будут чувствительны в основном к нейтронам из тепловой области спектра (например, ²³Na, ²⁶Mg, ²⁷Al, ³⁷Cl, ⁵⁰Ti, ⁵⁵Mn, ⁶³Cu и др.), либо из промежуточной области (например, ¹¹⁶Sn, ¹¹⁴Cd, ¹¹⁶Cd и др.). Также возможен и общий случай, когда детектор может быть чувствителен ко всем нейтронам из низкоэнергетических областей I-2 спектра (например, для ¹²⁷I, ¹⁷⁵Lu, ⁷⁹Br, ⁸¹Br, ¹⁹⁷Au и др.). В то же время практически отсутствуют примеры, когда заметен вклад только быстрых нейтронов в интеграл свертки. Только ¹⁰⁶Cd, ¹¹⁴Cd и ¹¹⁶Cd чувствительны ко всем областям спектра (в разной степени).

Поскольку нас интересует именно тепловая область спектра и плотность потока тепловых нейтронов, то для удобства проведения измерений в качестве изотопа активационного детектора выбран ⁵⁵Mn из-за достаточного больших значений сечения $\sigma_{\rm T}$ и удобного для измерений периода полураспада.

МЕТОДИКА ЭКСПЕРИМЕНТА

Фотонейтронный источник [1-3] создан на базе линейного ускорителя электронов с максимальной энергией 9 МэВ. Схема фотонейтронного источника показана на рис. 2. Электроны ускорителя вызывают в вольфрамовом конвертере *1* поток тормозных фотонов с максимальной энергией до 9 МэВ. Тормозные гамма-кванты, попадая на фотонейтронную мишень 2, выполненную в виде двух блоков $10 \times 10 \times 10$ см³ из бериллия, вызывают образование быстрых нейтронов в реакции ⁹Ве(γ , *n*). Нейтроны в полиэтиленовом замедлителе 4, окружающем фотонейтронные мишени, замедляются до тепловой энергии, при этом максимальная плотность потока тепловых нейтронов $10^7 - 10^8 \text{ см}^{-2} \cdot \text{с}^{-1}$ достигается в центре источника в объеме $10 \times 10 \times 10 \text{ см}^3$, расположенном между блоками бериллиевой мишени. Эта внутренняя область *6* обычно используется для облучения тепловыми нейтронами исследуемых образцов. Слои защиты из борированного полиэтилена *5* замедляют вышедшие из замедлителя быстрые нейтроны и поглощают медленные и тепловые нейтроны. Источник представляет собой куб с размерами $1 \times 1 \times 1 \text{ м}^3$.

В слоях замедлителя и защиты выполнен канал 3 для вывода нейтронов из источника в виде коллиматора диаметром 3 см, расположенный под углом 67° относительно направления электронного пучка и выходящий из центра области 6 с максимальной плотностью потока тепловых нейтронов.

Для измерения плотности потока нейтронов в качестве активационных детекторов использовались образцы KMnO₄ весом ~3 г, в которых в результате активации тепловыми нейтронами в реакции ⁵⁵Mn(n, γ)⁵⁶Mn образуется изотоп ⁵⁶Mn с периодом полураспада 2.58 ч. Для изотопа ⁵⁵Mn характерно большое сечение реакции нейтронного захвата для тепловых нейтронов $\sigma_{\rm T}$ = 13.3 бн [5].

Образцы размещались на разных расстояниях от выхода нейтронного канала. Каждый набор (11 образцов) устанавливался горизонтально по линии, перпендикулярной оси коллиматора на расстоянии 1.5—3.5 м от центра источника. Облучение образцов проводили при среднем токе электронов 50 мкА. Время облучения варьировалось от 60 до 180 мин.

После облучения образцы поочередно перемещались в низкофоновую камеру [7] и активационные у-спектры образцов были измерены с помошью HPGe-спектрометра из особо чистого германия. Время измерения каждого спектра составляло 1000 с. Спектры для каждого облученного образца были записаны в компьютер и обработаны с помощью программы SpectraLineGP [8]. В результате обработки вычисляли площадь аналитического пика с энергией 847 кэВ, соответствующего образованию изотопа ⁵⁶Mn. Далее по формуле (6) с использованием известного сечения σ_{T} реакции ⁵⁵Mn(n, γ)⁵⁶Mn, времен облучения, выдержки и измерения и других известных параметров (эффективность детектора, масса элемента в детекторе, выход ү-квантов и др.) вычислялась плотность потока нейтронов в точках расположения детекторов.

Полученные экспериментальные значения плотности потока тепловых нейтронов в зависимости от смещения ΔL от оси коллиматора при различных расстояниях R от центра источника представлены на рис. 3.

Рис. 2. Схема фотонейтронного источника: 1 - W-тормозная мишень-конвертер, 2 - Ве-фотонейтронныемишени, <math>3 - выводной нейтронный канал, <math>4 - полиэтиленовый замедлитель, <math>5 - защита из борированного полиэтилена, 6 - полость для внутреннего облу $чения, <math>7 - активационные образцы KMnO_4$.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Представленные на рис. 3 экспериментальные распределения плотности потока тепловых нейтронов приведены для расстояний R = 1.5, 2, 2.5 и 3 м от центра источника. Видно, что распределения имеют схожий характер и меняются подобным образом при изменении R. Поэтому их можно описать общей аппроксимационной кривой (кривые *3* на рис. 3), рассчитанной как сумма двух гауссианов, зависящих от смещения ΔL от оси коллиматора:

$$\Phi = \Phi_1 e^{-4\ln 2\left(\frac{\Delta L}{w_1}\right)^2} + \Phi_2 e^{-4\ln 2\left(\frac{\Delta L}{w_2}\right)^2},$$
 (7)

где параметры аппроксимации Φ_1 , Φ_2 — значения плотности потока на оси коллиматора, а w_1 , w_2 ширины распределений FWHM (полная ширина на середине высоты). На рис. 3 кривая *1* в этом случае отражает наличие пучка тепловых нейтронов, а кривая *2* — фон источника. Параметры аппроксимации в свою очередь зависят от расстояний *R* от центра источника, как показано на рис. 4.

Полученные зависимости параметров были использованы для вычисления по формуле (7) значений плотности потока тепловых нейтронов в широком диапазоне расстояний от источника и оси нейтронного канала. Результат представлен на рис. 5 в виде контурной диаграммы пространственного распределения тепловых нейтронов в горизонтальной плоскости относительно оси вы-

Рис. 3. Пространственные распределения плотности потока нейтронов в зависимости от смещения ΔL от оси коллиматора при различных расстояниях R от центра источника: a - 1.5, $\delta - 2$, e - 2.5, e - 3 м. Точки – экспериментальные данные. Кривые: 1 -аппроксимация по первой части формулы (7), 2 -по второй части, 3 -суммарная кривая аппроксимации экспериментальных данных по формуле (7).

водного канала фотонейтронного источника. Сплошными линиями показаны линии уровней (изолинии) и приведены некоторые соответствующие им значения плотности потока Ф. Подобные пространственные распределения могут быть построены отдельно по первой и второй частям формулы (7). При этом получаются, соответственно, распределение интенсивности в пучке тепловых нейтронов и распределение фона тепловых нейтронов вне источника.

Значения плотности потока Ф в центре источника и на выходе нейтронного канала полу-

Рис. 4. Зависимости параметров аппроксимации экспериментальных данных рис. 3 от расстояния R от центра источника: a, δ – параметры кривых 1; e, e – кривых 2 на рис. 3. Также приведены уравнения кривых, аппроксимирующих эти зависимости.

чились равными 10^7 и 10^4 см⁻² · с⁻¹ соответственно, что соответствует контрольным измерениям. При этом интенсивность (плотность потока) тепловых нейтронов на оси пучка составляет 600-150 см⁻² · с⁻¹ на расстоянии 1.5-3 м от центра источника. Для увеличения интенсивности нейтронов на выходе нейтронного канала необходи-

Рис. 5. Контурная диаграмма пространственного распределения тепловых нейтронов в горизонтальной плоскости относительно оси выводного канала фотонейтронного источника. Сплошными линиями показаны линии уровней (изолинии) и приведены некоторые соответствующие им значения плотности потока Φ [см⁻² · c⁻¹].

мы дополнительные исследования по оптимизации выводного коллиматора.

ЗАКЛЮЧЕНИЕ

Использование метода нейтронно-активационного анализа для изучения распределения тепловых нейтронов вблизи выхода нейтронного канала фотонейтронного источника позволило получить пространственное распределение тепловых нейтронов в виде карты плотности потока. Полученное распределение имеет максимум на оси нейтронного канала, что свидетельствует о наличии реального пучка нейтронов. Интенсивность тепловых нейтронов в таком пучке составляет на выходе коллиматора 10^4 и 600-150 см⁻² · c⁻¹ на расстоянии 1.5–3 м от центра источника. Для того чтобы в дальнейшем планировать физические задачи с использованием тепловых нейтронов, необходимо проведение дополнительных работ по оптимизации выводного коллиматора нейтронного канала. Также необходимы исследования пространственных распределений нейтронов из источника более высоких энергий, чем тепловые.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андреев А.В., Бурмистров Ю.М., Зуев С.В. и др. // Изв. РАН. Сер. физ. 2017. Т. 81. № 6. С. 824; Andreev A.V., Burmistrov Yu.M., Zuyev S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. № 6. Р. 748.
- 2. Zuyev S.V., Konobeevski E.S., Mordovskoy M.V. et al. // Phys. Part. Nucl. 2019. V. 50. № 5. P. 619.
- 3. *Andreev A., Burmistrov Yu., Gromov A. et al.* // Fifth Int. Conf. on Nucl. Fragm. NUFRA2015. (Kemer, 2015).
- 4. *Гутько В.И*. Активационный анализ. Минск: МГЭУ, 2008. 74 с.
- 5. https://www-nds.iaea.org/ngatlas2/.
- 6. Афонин А.А., Зуев С.В., Конобеевский Е.С. // Изв. РАН. Сер. физ. 2018. Т. 82. № 6. С. 814; Afonin А.А., Zuyev S.V., Konobeevski E.S. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. № 6. Р. 731.
- Андреев А.В., Бурмистров Ю.М., Зуев С.В. и др. // Яд. физ. и инж. 2013. Т. 4. № 9–10. С. 879.
- 8. http://lsrm.ru/products/detail.php?ELEMENT_CODE= SpectraLineGP.