УДК 539.14

ПОИСК ⁹Не ПРИ ПОГЛОЩЕНИИ ОСТАНОВИВШИХСЯ ПИОНОВ ЯДРАМИ ¹⁴С

© 2020 г. Ю. Б. Гуров¹, С. В. Лапушкин¹, Т. И. Леонова^{1, *}, В. Г. Сандуковский¹, Б. А. Чернышев¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

**E-mail: tileonova@yandex.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Выполнен экспериментальный поиск образования тяжелого изотопа гелия ⁹Не при поглощении остановившихся пионов ядрами ¹⁴С. Изучена структура уровней ⁹Не в спектрах недостающих масс (*MM*) в реакциях: ¹⁴С(π^- , p^4 He)X и ¹⁴С(π^- , d^3 He)X. Впервые обнаружено состояние с высокой энергией возбуждения 12.5 МэВ и шириной состояния 1.5 МэВ. Установлено подавление образования основного состояния ⁹Не в исследуемых реакциях.

DOI: 10.31857/S0367676520080141

введение

Экспериментальная ситуация со структурой уровней тяжелого изотопа гелия ⁹Не остается неопределенной [1, 2]. Впервые ⁹Не наблюдался в реакции перезарядки пионов ${}^{9}\text{Be}(\pi^{-}, \pi^{+}){}^{9}\text{He}$ [3]. Основное состояние оказалось нестабильным относительно нейтронного распада ${}^{9}\text{He}_{g.s.} \rightarrow {}^{8}\text{He} + n$ $(S_n = 1.13(10) \text{ МэВ})$. Близкие значения резонансной энергии основного состояния были получены в реакциях перезарядки ионов: ⁹Be(¹³C, ¹³O)⁹He [4, 5] и ⁹Ве(¹⁴С, ¹⁴О)⁹Не [5, 6]. Стандартная оболочечная модель предсказывает, что в основном состоянии ⁹Не последний нейтрон находится на $p_{1/2}$ оболочке, и поэтому это состояние имеет спин-четность $J^{P} = 1/2^{-}$. Однако, как было показано в работе [7], малая ширина состояния, наблюдаемая в этих экспериментах ($\Gamma = 0.42$ МэВ [3] и $\Gamma = 0.1$ МэВ [6]), находится в противоречии с предсказаниями оболочечной модели и указывает на возможную примесь sd-оболочки [1].

В то же время в реакциях выбивания двух протонов ⁹Be(¹¹Be, ⁸He + *n*)*X* были получены указания на то, что основное состояние ⁹He представляет собой виртуальное *s*-волновое состояния с длиной рассеяния $a_s \le -10$ фм, что соответствует максимуму в спектре возбуждения ≈ 0.2 МэВ [8]. В этом случае для ⁹He_{g. s.} спин-четность $J^p = 1/2^+$. Близкое значение величины $a_s \approx -12(3)$ фм было получено в реакции обдирки нейтрона $d(^{8}\text{He}, p)^{9}\text{He}$ при энергии E = 15A МэВ [9]. В этой же реакции при E = 25А МэВ существование виртуального состояния с $a_s > -20$ фм определено из значительной асимметрии рассеяния вперед-назад в [10]. В нескольких экспериментах на тяжелых ионах были также получены указания на *s*-волновую природу ⁹He_{g. s.} [11, 12], но со значительно большей длиной рассеяния $-3 \le a_s \le 0$ фм. Следует отметить достаточно низкую статистическую обеспеченность результатов по наблюдению s-волнового состояния в перечисленных выше работах.

Столь же неопределенной оказываются теоретические предсказания положения и спина-четности [1, 2]. Таким образом, вопрос о спин-четности основного состояния ⁹Не остается открытым, так же, как и положение этого состояния. Неопределенной является ситуация и с возбужденными состояниями ⁹Не.

В табл. 1 представлены результаты измерений параметров возбужденных состояний ⁹Не, полученных на пионных и ионных пучках. Заметим, что для тех работ, в которых получено указание на существование *s*-волнового основного состояния, в табл. 1 представлены значения резонансной энергии, отсчитанной от суммы масс ⁸Не и нейтрона.

Видно, что если учесть соотношение $E_r = E_x + E_{r0}$ (E_{r0} – резонансная энергия основного состояния), результаты лежат в одном и том же диапазоне энергий возбуждения, но расходятся более сильно, чем приведенные погрешности измере-

ний. По-видимому, одной из причин такого расхождения является недостаточная статистическая обеспеченность данных. Отметим, что только в двух работах [3, 5] наблюдались высоковозбужденные ($E_x > 5 \text{ МэВ}$) состояния.

Как следует из обзоров [1, 2], теория предсказывает существование достаточно большого количества уровней, лежащих как в области энергий возбуждений до 5 МэВ, так и в высоковозбужденной области, вплоть до 10 МэВ [13, 14]. В области низких возбуждений наблюдается качественное согласие между предсказаниями теории и эксперимента [1, 2], однако вследствие расхождений результатов эксперимента говорить о количественном согласии нельзя.

В такой ситуации экспериментальная информация, позволяющая разрешить имеющие противоречия и получить данные о новых состояниях ⁹Не, представляет большой интерес. Реакция поглощения остановившихся **π**--мезонов ядрами позволяет эффективно исследовать структуру уровней легких нейтронно-избыточных ядер [15, 16]. В наших работах [17-21] этот метод был использован для исследования тяжелых изотопов гелия ⁵⁻⁸He. Несколько высоковозбужденных состояний этих ядер в этих измерениях наблюдались впервые. В настоящей работе представлены данные о структуре уровней изотопа ⁹Не, полученные в корреляционных измерениях реакции поглощения остановившихся π⁻-мезонов ядрами радиоактивного изотопа углерода ¹⁴C: ¹⁴C(π^- , p^4 He)Xи ¹⁴C(π^- , d^3 He)X.

ЭКСПЕРИМЕНТ

Измерения были выполнены на канале пионов низких энергий LAMPF с помощью двухплечевого многослойного полупроводникового спектрометра [22]. Пучок отрицательных пионов с энергией 30 МэВ проходил через бериллиевый замедлитель и останавливался в тонкой мишени (~24 мг · см⁻²). В качестве мишеней в измерениях использовались изотопы углерода - изотопночистая мишень ¹²С и радиоактивная мишень "¹⁴С", состоящая из смеси 77% ¹⁴С и 23% ¹²С. Измерения на обеих мишенях проводились в рамках одного экспериментального сеанса. Это позволило в измерениях на радиоактивной мишени минимизировать погрешности определения вклада от поглощения ¹⁴С, который определялся после вычета вклада от поглощения на ¹²С. Скорость остановок пионов в мишенях составляла ~6 · 10⁴ c⁻¹.

Вторичные заряженные частицы — изотопы водорода (p, d, t) и гелия (^{3, 4, 6}He), образующиеся в реакции, регистрировались двумя многослойными полупроводниковыми телескопами, расположенными под углом 180° относительно друг друга. Каждый из телескопов состоял из двух тон**Таблица 1.** Экспериментальные результаты по возбужденным уровням ⁹Не

<i>Е</i> _{<i>x</i>} , МэВ	Г, МэВ	Реакция/ссылка
2.33(10)	0.42(10)	${}^{9}\text{Be}(\pi^{-},\pi^{+}){}^{9}\text{He}[3]$
4.93(10)	0.5(1)	
≈7	≈0.6	
1.15(10)		⁹ Be(¹³ C, ¹³ O) ⁹ He [4]
3.80(12)		
1.15(10)	0.7(2)	⁹ Be(¹⁴ C, ¹⁴ O) ⁹ He [5]
3.03(10)		
3.98(12)		
≈8	0.7(2)	
≈4	≤1	¹⁴ С(π ⁻ , <i>p</i> ⁴ He) ⁹ He, данная работа
≈7	≤1	
≈12.5	≈1.5	
≈4	≤1	$^{14}C(\pi^{-}, d^{3}He)^{9}He,$
		данная работа
≈7	≤1	
<i>Е</i> ,, МэВ	Г, МэВ	Реакция/ссылка
1.33(8)	0.1(6)	1 H(11 Li, 8 He + <i>n</i>)X[11]
2.42(10)	0.7(2)	
2.0(2)	~2	2 H(8 He, <i>p</i>) 9 He [12]
≥4.2	>0.5	
1.2(1)	~0.1	2 H(8 He, <i>p</i>) 9 He [9]
3.4(8)	2.9(4)	

ких Si(Au) детекторов-идентификаторов без заметных нечувствительных слоев и 14 Si(Li) п.п.д. с полными толщинами ~3 мм с протяженностью нечувствительного слоя - 100 мкм. Суммарная толщина всех детекторов в каждом из телескопов ≥43 мм, что превышает пробег заряженных ядер. образующихся в исследуемых реакциях. В результате, достигается высокое энергетическое разрешение во всем диапазоне измерений энергий. Для однозарядных частиц (p, d, t) эта величина (FWHM) составляла 0.45 МэВ, а для двухзарядных изотопов гелия - 2 МэВ [15]. Точность определения абсолютной шкалы недостающих масс составила 0.1 МэВ [15, 16]. Более подробно спектрометр и экспериментальная методика описаны в работах [15, 16, 23].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Спектры недостающих масс (*MM*), измеренные в реакциях ${}^{14}C(\pi^-, p^4\text{He})X$ и ${}^{14}C(\pi^-, d^3\text{He})X$ пред-

Рис. 1. *ММ*-спектр, измеренный в реакции ${}^{14}C(\pi^-, p^4\text{He})X. a$ – Точки с погрешностями, *ММ*-распределение, измеренное на "радиоактивной" мишени в предположении изотопно-чистого состава ${}^{14}C$; заштрихованная гистограмма ${}^{14}C - MM$ -спектр, измеренный на мишени ${}^{12}C$ и нормированный на долю ${}^{12}C$ в "радиоактивной" мишени; δ – точки с погрешностями, *MM*-спектр после вычета вклада примеси ${}^{12}C$, сплошные линии – Брейта–Вигнера распределения для основного и возбужденных состояний 9 Не, *1* – полное описание и *2* – распределение по фазовому объему p^{4} Не⁷Не²*n*.

Рис. 2. *ММ*-спектр, измеренный в реакции ${}^{14}C(\pi^-, d^3He)X$. a – Точки с погрешностями, *ММ*-распределение, измеренное на "радиоактивной" мишени в предположении изотопно-чистого состава ${}^{14}C$; заштрихованная гистограмма ${}^{14}C - MM$ -спектр, измеренный на мишени ${}^{12}C$ и нормированный на долю ${}^{12}C$ в "радиоактивной" мишени; δ – точки с погрешностями, *MM*-спектр после вычета вклада примеси ${}^{12}C$, сплошные линии – Брейта–Вигнера распределения для основного и возбужденных состояний ⁹He, *1* – полное описание, *2* – распределение по фазовому объему d^3 He⁶He³n.

ставлены на рис. 1 и 2. За начало отсчета принята масса ⁹Не из компиляции [24] ($S_n = -1.25 \text{ M}$ эB).

Спектры, представленные на рис. 1а и 2а, получены в предположении, что поглощение происходит на ядрах ¹⁴С. В действительности заметный вклад в спектры вносят примесные ядра ¹²С, что наглядно демонстрируют события, лежащие в нефизической области $MM \le -1.25$ МэВ. Для вы-

чета этого вклада используются спектры, измеренные на изотопно-чистой мишени ¹²C, рассчитанные по кинематике поглощения на ¹⁴C и нормированные на процентный вклад примеси ¹²C (23%) в "радиоактивной" мишени. Полученные таким образом спектры показаны на рис. 1*а* и 2*a* в виде заштрихованных гистограмм. *ММ*-спектры на ¹⁴C, полученные после вычитания примеси ¹²C, представлены на рис. 1*6* и 2*6*.

В обоих спектрах выделяются пики, обусловленные основным и возбужденными состояниями ⁹Не. Для выделения состояний ⁹Не был использован метод наименьших квадратов при описании спектров на рис. 1*б* и 2*б* суммой распределений Брейта—Вигнера и распределений по фазовым объемам всех возможных *n*-частичных каналов конечных состояний ($n \ge 4$) с учетом энергетического разрешения измерений. При описании параметры основного состояния фиксировались ($S_n = -1.25 \text{ МэВ}$ [24], $\Gamma = 0.42 \text{ МэВ}$ [3]). Параметры возбужденных состояний являлись свободными и их значения представлены в табл. 1.

Наши результаты по положению основного состояния ($E_{r0} \sim 1 \text{ M} \Rightarrow B$) согласуются с результатами работ [3-6]. Однако вследствие невысокой статистической обеспеченности данных и энергетического разрешения нельзя исключить существование состояния с меньшей резонансной энергией. Следует отметить, что в обеих реакциях выходы каналов с образованием основного состояния ⁹Не подавлены по сравнению с каналами с возбужденными состояниями. Указанием на подавление каналов реакции с образованием ⁸He_{g.s.}+ n является отсутствие вклада в описание непрерывных спектров конечных состояний π^- + ${}^{14}\mathrm{C}$ ightarrow $\rightarrow p^4 \text{He}^8 \text{He}_{g.s.} n$ и $\pi^- + {}^{14}\text{C} \rightarrow d^3 \text{He}^8 \text{He}_{g.s.} n$. По-видимому, это подавление обусловлено структурой ¹⁴С. Как показано в обзоре [15] в трехчастичных каналах реакции поглошения остановившихся пионов, основной вклад в образование слабосвязанных состояний вносят квазисвободные процессы, в которых остаточная система не принимает непосредственного участия. В этом случае при отсутствии в поглощающем ядре внутриядерного кластера определенной конфигурации его образование в этой реакции будет сильно подавлено.

Эта же причина может объяснить отсутствие в наших данных указаний на уровни возбуждения в области $E_x \sim 1-3$ МэВ ($E_r \sim 2-4$ МэВ), наблюдаемых в других экспериментах (см. табл. 1). Наблюдаемый нами в обеих реакциях уровень при $E_x \approx 4$ МэВ совпадает с уровнем 3.98 МэВ, наблюдаемом в реакции перезарядки ионов ⁹Ве(¹⁴C, ¹⁴O)⁹Не [5, 6]. Этот уровень может представлять собой систему возбужденного состояния ⁸Не ($J^P = 2^+$) и нейтрона на $1d_{5/2}$ -оболочке [2]. Расчеты, выполненные в рамках

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020

модели связанных каналов, предсказывают для этого возбужденного состояния $J^p = 5/2^+$ [25].

Наши результаты подтверждают указания на существование относительно узкого состояния при $E_x \sim 7$ МэВ, которые были получены в работах [3, 5]. В целом ряде теоретических работ (см. обзоры [1, 2]), использующих различные виды оболочечных моделей, предсказываются сразу несколько уровней, лежащих в интервале $6.5 \le E_x \le 10$ МэВ с различными квантовыми числами. В связи с недостаточным энергетическим разрешением не представляется возможным приписать наблюдаемому в наших измерениях состоянию определенную спин-четность.

Уровень с $E_x \approx 12.5$ МэВ и Г ≈1.5 МэВ, измеренный в реакции ${}^{14}C(\pi^-, p^4\text{He})X$, наблюдался впервые. Отметим, что эта величина возбуждения практически на 5 МэВ превышает максимальную энергию возбуждения, наблюдаемую до настоящего времени [1, 2]. Следует отметить, что в большинстве экспериментальных работ исследованная область возбуждений ограничена гораздо меньшими величинами. В работах [3, 5], в которых исследовалась область высоких возбуждений, статистическая обеспеченность данных недостаточна в этой области. Также отсутствуют и теоретические расчеты при $E_x > 11$ МэВ. Можно отметить, что наблюдаемый в наших измерениях уровень лежит вблизи порога распада ⁹He \rightarrow *tt*3*n* (13.2 МэВ). Учитывая приближенность полученного результата нельзя исключить, что наблюдаемый уровень является пороговым.

ЗАКЛЮЧЕНИЕ

Поиск состояний тяжелого изотопа гелия ⁹Не был выполнен в корреляционных измерениях реакций поглощения остановившихся π^- -мезонов ¹⁴С(π^- , p^4 He)X и ¹⁴С(π^- , d^3 He)X. В обеих реакциях наблюдалось основное состояние ⁹He, параметры которого совпадают с мировыми данными [1, 2]. Однако выход этого состояния подавлен по отношению к наблюдаемым возбужденным состояниям. Наши результаты подтверждают полученные ранее указания на существование достаточно узкого высоковозбужденного состояния при $E_x \sim 7$ МэВ. В реакции ¹⁴С(π^- , p^4 He)X впервые наблюдался уровень с рекордно высокой энергией возбуждения $E_x \approx 12.5$ МэВ ($\Gamma \approx 1.5$ МэВ).

Работа поддержана Министерством образования и науки РФ (грант N3.4911.2017/6.7) и программой повышения конкурентно способности НИЯУ "МИФИ" (соглашение с Министерством образования и науки РФ от 27 августа 2013, проект № 02.a03.21.0005).

СПИСОК ЛИТЕРАТУРЫ

- 1. Tanihata I., Savajols H., Kanungo R. // Progr. Part. Nucl. Phys. 2013. V. 68. P. 215.
- Пенионжкевич Ю.Э., Калпакчиева Р.Г. Легкие ядра у границы нейтронной стабильности. Дубна: ОИЯИ, 2016. 145 с.
- Seth K.K., Artuso M., Barlow D. et al. // Phys. Rev. Lett. 1987. V. 58. P. 1930.
- Bohlen H.G., Gebauer B., Kolbert D. et al. // Z. Phys. A. 1988. V. 330. P. 227.
- von Oertzen W., Bohlen H.G., Gebauer B. et al. // Nucl. Phys. A. 1995. V. 588. P. 129.
- Bohlen H.G., Blazevic A., Gebauer B. et al. // Prog. Part. Nucl. Phys. 1999. V. 42. P. 17.
- 7. Barker F.C. // Nucl. Phys. A. 2004. V. 741. P. 42.
- Chen L., Blank B., Brown B.A. et al. // Phys. Lett. B. 2001. V. 505. P. 21.
- 9. *Kalanee T., Gibelin J., Roussel-Chomaz P. et al.* // Phys. Rev. C. 2013. V. 88. Art. № 034301.
- Al Falou H., Leprince A., and Orr N.A. // J. Phys. Conf. Ser. 2011. V. 312. Art. № 092012.
- Johansson H.T., Aksyutina Y., Aumann T. et al. // Nucl. Phys. A. 2010. V. 842. P. 15.
- Golovkov M.S., Grigorenko L.V., Fomichev A.S. et al. // Phys. Rev. C. 2007. V. 76. Art. № 021605.
- Myo T., Kato K., Aoyama S. et al. // Phys. Rev. C. 2001. V. 63. Art. № 054313.
- Quaglioni S., Navratil P. // Phys. Rev. Lett. 2008. V. 101. Art. № 092501.
- Гуров Ю.Б., Лапушкин С.В., Сандуковский В.Г., Чернышев Б.А. // ЭЧАЯ. 2009. Т. 40. С. 1063; Gurov Yu.B., Lapushkin S.V., Sandukovsky V.G., Chernyshev B.A. // Phys. Part. Nucl. 2009. V. 40. P. 558.

- Гуров Ю.Б. Короткова Л.Ю., Лапушкин С.В. и др. // ЯФ. 2016. Т. 79. С. 338; Gurov Yu.B., Korotkova L.Yu., Lapushkin S.V. et al. // Phys. Atom. Nucl. 2009. V. 79. P. 525.
- 17. Гуров Ю.Б., Карпухин В.С., Лапушкин С.В. и др. // Письма в ЖЭТФ. 2006. Т. 84. С. 3; Gurov Yu.B., Karpukhin V.S., Lapushkin S.V. et al. // JETP Lett. 2006. V. 84. P. 1.
- Гуров Ю.Б., Короткова Л.Ю., Лапушкин С.В. и др. // Изв. РАН. Сер. физ. 2014. Т. 78. С. 1370; Gurov Yu.B., Korotkova L.Yu., Lapushkin S.V. et al. // Bull. Russ. Acad. Sci. Phys. 2014. V. 78. P. 1108.
- Гуров Ю.Б., Короткова Л.Ю., Лапушкин С.В. и др. // Письма в ЖЭТФ. 2015. Т. 101. С. 73; Gurov Yu.B., Korotkova L.Yu., Lapushkin S.V. et al. // JETP Lett. 2015. V. 101. P. 69.
- 20. Гуров Ю.Б., Короткова Л.Ю., Кузнецов Д.С. и др. // Изв. РАН. Сер. физ. 2015. Т. 79. С. 512; Gurov Yu.B., Korotkova L.Yu., Kuznetsov D.S. et al. // Bull. Russ. Acad. Sci. Phys. 2015. V. 79. P. 470.
- Гуров Ю.Б., Жеан-Короткова, Л.Ю., Карпухин В.С. и др. // Изв. РАН. Сер. физ. 2018. Т. 82. С. 753; Gurov Yu.B., Jean-Korotkova L.Yu., Karpukhin V.S. et al. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. P. 678.
- Гуров Ю.Б., Лапушкин С.В., Леонова Т.И. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. С. 530; Gurov Yu.B., Lapushkin S.V., Leonova T.I. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 479.
- 23. *Gornov M.G., Gurov Yu.B., Morokhov P.V. et al.* // Nucl. Instrum. Meth. Phys. Res. A. 2000. V. 446. P. 461.
- Wang M., Audi G., Wapstra A.H. et al. // Chin. Phys. C. 2012. V. 36. P. 1603.
- 25. Palit R., Adrich P., Aumann T. et al. // Nucl. Phys. A. 2004. V. 731. P. 235.