УЛК 539.124.17

ВЗАИМНЫЕ КОНВЕРСИИ ЛЕПТОНОВ В НЕДИАГОНАЛЬНЫХ ПРОЦЕССАХ

© 2020 г. Ю. И. Романов*

Федеральное государственное бюджетное образовательное учреждение высшего образования "Российский государственный университет имени А.Н. Косыгина", Москва, Россия

> *E-mail: romanov.yu.i@mail.ru Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Изучены процессы неупругого рассеяния (анти)нейтрино на электроне и мюоне, сопровождающиеся взаимной конверсией как нейтральных, так и заряженных лептонов. Спиновые корреляции в рассматриваемых реакциях проанализированы на основе двух- и четырехкомпонентной теории нейтрино.

DOI: 10.31857/S0367676520080256

Одним из фундаментальных процессов слабого взаимодействия является неупругое рассеяние мюонного нейтрино на электроне с рождением мюона

$$v_{\mu} + e^{-} \rightarrow v_{e} + \mu^{-}. \tag{1}$$

Эта реакция, сопровождаемая конверсией как нейтрального, так и заряженного лептона, является важным источником информации о структуре лептонных токов, проверки схем сохранения лептонного заряда.

Процесс имеет порог $s=m_{\mu}^2$, где s- квадрат полной энергии в системе центра масс, $m_{\mu}-$ масса мюона.

Начнем с описания этой реакции на основе взаимодействия заряженных токов (CC-описание), имеющих произвольную пространственновременную структуру в терминах векторной и аксиально-векторной связи с константами g_V и g_A :

$$L_{CC} = \frac{G_{ch}}{\sqrt{2}} \overline{\mu} \gamma_{\alpha} (1 + \lambda_{\mu} \gamma_{5}) \nu_{\mu} \overline{\nu}_{e} \gamma_{\alpha} (1 + \lambda_{e} \gamma_{5}) e,$$

$$\lambda_{\mu(e)} = g_{A}^{\mu(e)} / g_{V}^{\mu(e)}, \ G_{ch} = G g_{V}^{\mu} g_{V}^{e},$$
(2)

где G — константа Ферми. Допускаем, что константы могут быть как действительными, так и комплексными или чисто мнимыми.

Если константы равны $\lambda_{\mu} = \lambda_{e} = \lambda_{ch}$, связь действительных значений λ_{ch} с отношением

$$R = \sigma^{CC}(v_{\mu}e)/\sigma^{CC}(\tilde{v}_{e}e)$$
 (3)

полных сечений реакции (1) и неупругого рассеяния антинейтрино на электроне

$$\tilde{\mathbf{v}}_e + e^- \to \tilde{\mathbf{v}}_{\mu} + \mu^- \tag{4}$$

описывается формулой [1]

$$\lambda_{ch} = \frac{1 \pm \sqrt{3 - R}}{\sqrt{R - 2}}.\tag{5}$$

Общие выражения *CC*-спектров рождающихся моюнов в обсуждаемых реакциях имеют вид $(q = v, \tilde{v})$:

$$\frac{d\sigma(\nu_{\mu}e)}{dE_{\mu}} = \frac{|G_{ch}|^2}{8\pi E_q^2} \left[\frac{AF_1(E_q)}{AF_2(E_q)} + Bf_1(E_{\mu}) \right].$$
(6)

В этих формулах

$$\begin{split} F_{1}(E_{q}) &= E_{q} \left(2E_{q}m_{e} - m_{\mu}^{2} \right), \\ F_{2}(E_{q}) &= (E_{q} - E_{\mu}) \Big[2m_{e} \left(E_{q} - E_{\mu} \right) - m_{\mu}^{2} \Big], \\ f_{1}(E_{\mu}) &= E_{\mu} \left(2E_{\mu}m_{e} - m_{\mu}^{2} \right), \end{split}$$

 E_q — энергии начальных (анти)нейтрино, E_μ — полная энергия мюона в лаб. сист., m_e — масса электрона, $A(B) = \left(1 + \left|\lambda_{ch}\right|^2\right)^2 \pm \left(2\operatorname{Re}\lambda_{ch}\right)^2$.

Другая возможность описания обсуждаемых реакций заключается в применении недиагональных нейтральных токов (NC-описание):

$$L_{NC} = \frac{G_n}{\sqrt{2}} \overline{\mathbf{v}}_e \gamma_\alpha \left(1 + \lambda_\nu \gamma_5 \right) \mathbf{v}_\mu \overline{\mathbf{\mu}} \gamma_\alpha \left(1 + \lambda_l \gamma_5 \right) e,$$

$$\lambda_\nu = g_A^{\nu} / g_V^{\nu}, \ \lambda_l = g_A^{\prime} / g_V^{\prime}, \ G_n = G g_V^{\nu} g_V^{\prime}.$$
(7)

Полагая константы действительными и включая отношение полных *NC*-сечений

$$r = \sigma^{NC}(v_{\mu}e) / \sigma^{NC}(\tilde{v}_{e}e), \qquad (3a)$$

при $\lambda_v = 1$, $\lambda_l \to \lambda_n$, приходим к формуле, открывающей возможность проникновения в структуру нейтрального тока ($\bar{\mu}e$) [2]

$$\lambda_n = \frac{(r+1) \pm \sqrt{(3r-1)(3-r)}}{2(r-1)}.$$
 (8)

При действительных значениях константы λ_n получаем мюонные *NC*-спектры, отвечающие неупругому $v_u e$ (1) и ($\lambda_n \to -\lambda_n$) $\tilde{v}_e e$ (4) рассеяниям:

$$\frac{d\sigma}{dE_{\mu}} = \frac{G_{n}^{2}}{4\pi E_{q}^{2}} \Big[(1 + \lambda_{n})^{2} F_{1}(E_{q}) + (1 - \lambda_{n})^{2} F_{2}(E_{q}) - (1 - \lambda_{n}^{2}) f_{2}(E_{\mu}) \Big], \tag{9}$$

где
$$f_2(E_{\mu}) = m_{\mu} (2E_{\mu}m_e - m_{\mu}^2).$$

"Чистая" (V-A)-связь токов ((V-A)) описание: $\lambda_{ch} = \lambda_n = 1$) соответствует случаю R = r = 3, приводящему к слиянию C- и NC-описаний недиагональных процессов. В то же время, согласно формуле (9), (V+A)-связь токов $(\overline{\mu}e)$ и $(\overline{\nu}_e \nu_\mu)$ $((V+A)_{NC})$ описание: $\lambda_n = -1$) предсказывает спектр мюонов в реакции (4), совпадающий с (V-A) спектром в реакции (1):

$$\frac{d\sigma(v_{\mu}e)}{dE_{\mu}} = \frac{G^2}{\pi E_{\nu}} \left(2E_{\nu}m_e - m_{\mu}^2 \right). \tag{10}$$

Так же связаны (V - A)-спектр в реакции (4)

$$\frac{d\sigma(\tilde{\mathbf{v}}_{e}e)}{dE_{\mu}} = \frac{G^{2}}{\pi E_{\tilde{\mathbf{v}}}^{2}} (E_{\tilde{\mathbf{v}}} - E_{\mu}) \times \\
\times \left[2(E_{\tilde{\mathbf{v}}} - E_{\mu}) m_{e} - m_{\mu}^{2} \right]$$
(11)

 $c(V+A)_{NC}$ спектром в реакции (1).

Можно отметить, что в предельных случаях представленные спектры принимают вид электронных (V-A) "собратьев" при упругих $\nu_e e$ и $\tilde{\nu}_e e$ рассеяниях:

$$\frac{d\sigma(v_{\mu}e)}{dE_{\mu}} = \sigma_0, \quad E_{\nu} \gg \frac{m_{\mu}^2}{2m_e}, \tag{10a}$$

$$\frac{d\sigma(\tilde{\mathbf{v}}_e e)}{dE_{\mu}} = \sigma_0 \left(1 - \frac{E_{\mu}}{E_{\tilde{\mathbf{v}}}} \right)^2, \quad E_{\tilde{\mathbf{v}}} \gg E_{\mu} + \frac{m_{\mu}^2}{2m_e}. \tag{11a}$$

Здесь
$$\sigma_0 = \frac{2G^2 m_e}{\pi} \cong 1.7 \cdot 10^{-48} \; \mathrm{M}^2 \cdot \mathrm{M} \ni \mathrm{B}^{-1}.$$

Установленными видами связи характеризуются и полные сечения:

$$\sigma(v_{\parallel}e)_{V+A}^{NC} = \sigma(\tilde{v}_{e}e)_{V-A}, \tag{12}$$

$$\sigma(\tilde{\mathbf{v}}_e e)_{V+A}^{NC} = \sigma(\mathbf{v}_u e)_{V-A}. \tag{13}$$

Продолжая анализ (V-A)- и $(V+A)_{NC}$ -описаний изучаемых реакций, отметим, что нейтрино должно "оставлять след" при рассеянии на электронах и мюонах: с его спиральными свойствами связано появление поляризации спинов заряженных частиц. Явная зависимость полных сечений от спиральностей лептонов позволяет исследовать спиновые корреляции на основе метода [3], открывшего путь к широкому изучению поляризационных явлений в различных (не)диагональных процессах [4].

Рассматриваемые подходы к обсуждаемым реакциям приводят к следующим результатам. Согласно (V-A)- и $(V+A)_{NC}$ -описаниям реакций (4) и (1) соответственно, сближающиеся и разлетающиеся частицы должны обладать противоположной спиральностью h_i $(i=v,\tilde{v},e,\mu)$:

$$h_e = -h_{\tilde{\nu}_e}, \ h_{\mu} = -h_{\tilde{\nu}_{\mu}}; \ h_e = -h_{\nu_{\mu}}, \ h_{\mu} = -h_{\nu_{e}}.$$
 (14)

Связаны также (V - A)- и $(V + A)_{NC}$ -описания реакций (1) и (4) соответственно: все частицы должны иметь одинаковые спиральности

$$h_e = h_{\mu} = h_{\nu_{\mu}} = h_{\nu_{e}}, \ h_e = h_{\mu} = h_{\tilde{\nu}_{\mu}} = h_{\tilde{\nu}_{e}}.$$
 (15)

В табл. 1 представлены результаты анализа полных сечений изучаемых реакций с учётом продольной поляризации участвующих в них частиц. На основе представлений двухкомпонентной теории нейтрино приходим к выводу, что, согласно спиновым корреляциям (14) и (15), (V-A)-описание предсказывает участие в реакциях (1) и (4) левополяризованных (левых) отрицательно заряженных лептонов:

$$\mathbf{v}_{\mu}^{L} + e_{L}^{-} \rightarrow \mathbf{v}_{e}^{L} + \mathbf{\mu}_{L}^{-}, \tag{16a}$$

$$\tilde{\mathbf{v}}_e^R + e_L^- \to \tilde{\mathbf{v}}_\mu^R + \mu_L^- \tag{17a}$$

в то время как $(V+A)_{NC}$ описание определяет участие правополяризованных (правых) электронов и мюонов:

$$\mathbf{v}_{\mu}^{L} + e_{R}^{-} \rightarrow \mathbf{v}_{e}^{L} + \mathbf{\mu}_{R}^{-}, \tag{166}$$

$$\tilde{\mathbf{v}}_e^R + e_R^- \to \tilde{\mathbf{v}}_\mu^R + \mu_R^-. \tag{176}$$

Представленный анализ реакций (1) и (4) относится к взаимным конверсиям как нейтральных, так и заряженных лептонов: полученные результаты действительны и для обратных беспороговых реакций

$$v_e + \mu^- \rightarrow v_u + e^-, \ \tilde{v}_u + \mu^- \rightarrow \tilde{v}_e + e^-.$$
 (18)

Согласно четырёхкомпонентной теории нейтрино, описывающей взаимодействие лептонов первых двух поколений, мюонное нейтрино — правое, отрицательно заряженный мюон рассматривается как античастица. Вводится только один сохра-

Таблица 1. Картина описания неупругих (анти)нейтрино-электронных и мюонных рассеяний на основе двух-компонентной теории нейтрино: $h_{v_e} = h_{v_u} = -1$, $h_{\tilde{v}_e} = h_{\tilde{v}_u} = +1$

Реакции	Вид связи, токи		Спиновые корреляции	Полные сечения $(s \gg m_{\mu}^2)$	
$\nu_{\mu} + e^{-} \rightarrow \nu_{e} + \mu^{-}$	(V-A)	$(\overline{\mathrm{v}}_{e}e)(\overline{\mu}\mathrm{v}_{\mu})$	$h_{\mu}=h_{e}=h_{\nu}$	$\sigma(v_{\mu}e) = \frac{G^2s}{16\pi} (1 - h_e)^2 (1 - h_{\mu})^2$	(I)
	$(V+A)_{NC}$	$\big(\overline{\nu}_e\nu_\mu\big)\big(\overline{\mu}e\big)$	$h_{\mu} = h_e = -h_{\nu}$	$\sigma(v_{\mu}e) = \frac{G^2s}{12\pi} (1 + h_e) (1 + h_e h_{\mu})$	(II)
$\tilde{\mathbf{v}}_e + e^- \rightarrow \tilde{\mathbf{v}}_{\mu} + \mu^-$	(V-A)	$\big(\overline{\tilde{v}}_e e\big) \big(\overline{\mu} \tilde{v}_{\mu}\big)$	$h_{\mu} = h_e = -h_{\tilde{v}}$	$\sigma(\tilde{\mathbf{v}}_e e) = \frac{G^2 s}{12\pi} (1 - h_e) (1 - h_{\mu}) $	(III)
	$(V+A)_{NC}$	$(\overline{\tilde{v}}_e \tilde{v}_\mu)(\overline{\mu}e)$	$h_{\mu}=h_{e}=h_{\tilde{\mathrm{v}}}$	$\sigma(\tilde{v}_e e) = \frac{G^2 s}{8\pi} (1 + h_e)^2 (1 + h_\mu)$	(IV)

Таблица 2. Картина описания неупругих (анти)нейтрино-электронных и мюонных рассеяний на основе четырёхкомпонентной теории нейтрино: $h_{v_e} = -1$, $h_{\tilde{v}_u} = +1$, $h_{\tilde{v}_u} = +1$, $h_{\tilde{v}_u} = -1$

Реакции	Вид связи, токи		Спиновые корреляции		Полные сечения ($s \gg m_{\mu}^2$)
$v + \mu^- \leftrightarrow \tilde{v} + e^-$	(V-A)	$(\overline{e} v_L)(\overline{\mu} \widetilde{v}_R)$		$h_e=h_{ m v},h_{ m \mu}=h_{ m ilde v}$	$\sigma = \frac{G^2 s}{12\pi} (1 - h_e) (1 + h_{\mu})$
		$(\overline{e}\widetilde{\mathbf{v}}_L)(\overline{\mu}\mathbf{v}_R)$			$\sigma = \frac{G^2 s}{12\pi} (1 + h_e) (1 - h_{\mu})$
	(V+A)	$(\overline{e} v_L)(\overline{\mu} \widetilde{v}_L)$	$h_{_{\mathrm{V}}}=h_{_{\mathrm{\widetilde{V}}}}$	$h_{\mu}=h_{\mathrm{v}},h_{e}=h_{\tilde{\mathrm{v}}}$	Определяются формулой (I)
		$(\overline{e}\tilde{v}_R)(\overline{\mu}v_R)$		$h_{\mu} = -h_{\nu}, h_{e} = -h_{\tilde{\nu}}$	Определяются формулой (III)

няющийся лептонный заряд L, равный +1 для $e^-, \mu^+, \nu_e^L, \nu_\mu^R$ и -1 для $e^+, \mu^-, \tilde{\nu}_e^R, \tilde{\nu}_\mu^L$.

Теория допускает реакции

$$v + \mu^{-} \leftrightarrow \tilde{v} + e^{-},$$
 (19)

которые, в отличие от (1) и (4), сопровождаются взаимными $V \leftrightarrow \tilde{V}$ превращениями.

(V-A)-описание этих реакций, представленное в табл. 2, приводит к участию нейтральных лептонов, как и частиц в начальном и конечном состояниях, имеющих противоположные спиральности:

$$\tilde{\mathbf{v}}_R + e_L^- \leftrightarrow \mathbf{v}_L + \mu_R^-, \tag{19a}$$

$$\tilde{\mathbf{v}}_L + e_R^- \leftrightarrow \mathbf{v}_R + \mu_L^-.$$
 (196)

Таким образом, предсказывается превращение нейтрино только в "свою" античастицу и наоборот: $v_e \leftrightarrow \tilde{v}_e$ и $v_u \leftrightarrow \tilde{v}_u$. Описание реакций (19а) и (19б)

предполагает включение токов, в которых электроны и мюоны "меняются партнерами".

(V+A)-описание предсказывает реакции с нейтральными лептонами, обладающими одинаковой спиральностью, т.е. взаимные конверсии нейтрино и антинейтрино различных семейств. Как показано в табл. 2, (V+A)-связь токов $(\overline{e}v_e)$ и $(\overline{\mu}\tilde{v}_{\mu})$ и их эрмитово-сопряженных приводит к $v_e \leftrightarrow \tilde{v}_{\mu}$ конверсиям, сопровождаемым взаимными переходами левых электронов и мюонов

$$v_L + \mu_L^- \leftrightarrow \tilde{v}_L + e_L^-.$$
 (19B)

В то же время (V+A)-связь токов $(\overline{e}\tilde{\nu}_e)$ и $(\overline{\mu}\nu_{\mu})$ обеспечивает $\nu_{\mu} \leftrightarrow \tilde{\nu}_e$ конверсии также с взаимными превращениями левых заряженных лептонов

$$V_R + \mu_L^- \leftrightarrow \tilde{V}_R + e_L^-.$$
 (19r)

Результаты анализа рассмотренных реакций, представленные в табл. 1 и 2, приводят к выводу: предсказание о рождении левых отрицательных мюонов при (анти)нейтринно-электронных столкновениях не позволяет выявить различие в спиральных свойствах нейтральных членов мюонного семейства, так как и ν_{μ} в рамках концепции левовинтового нейтрино ((V-A)-описание), и $\tilde{\nu}_{\mu}$, согласно представлениям четырехкомпонентной теории ((V+A)-описание), оба левополяризованы.

Можно надеяться, что развитие экспериментальной базы для изучения рассмотренных процессов поможет углубить представления о меха-

низме слабого взаимодействия лептонов, о структуре заряженных и нейтральных токов.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Романов Ю.И.* // Изв. РАН. Сер физ. 2018. Т. 82. № 6. С. 842; *Romanov Yu.I.* // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. № 8. Р. 757.
- 2. *Романов Ю.И.* // Изв. РАН. Сер физ. 2019. Т. 83. № 4. С. 550; *Romanov Yu.I.* // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. № 4. Р. 499.
- 3. *Керимов Б.К.* // Изв. АН СССР. Сер. физ. 1961. Т. 25. № 1. С. 161.
- 4. *Романов Ю.И.* Слабое взаимодействие лептонов. Избранное. М.: МГУДТ, 2011. 293 с.