УДК 539.17.01:539.142:539.143

# НЕСТАЦИОНАРНОЕ ОПИСАНИЕ РЕАКЦИЙ СО СЛАБОСВЯЗАННЫМИ ЯДРАМИ <sup>8</sup>Li, <sup>8</sup>B

© 2020 г. В. В. Самарин<sup>1, 2, \*</sup>

<sup>1</sup> Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия

<sup>2</sup>Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

> \**E-mail: samarin@jinr.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Численное решение нестационарного уравнения Шредингера применено для изучения динамики реакций развала и нуклонных передач при энергиях выше кулоновского барьера. Исследована эволюция волновых функций внешних слабосвязанных нейтрона ядра <sup>8</sup>Li и протона ядра <sup>8</sup>B при столкновении с ядром <sup>28</sup>Si. Рассчитаны сечения потери внешнего нуклона за счет процессов передачи и развала.

**DOI:** 10.31857/S036767652008027X

### введение

Реакции с участием легких слабосвязанных ядер, таких как нейтроноизбыточное <sup>11</sup>Li и протоноизбыточное <sup>8</sup>В дают дополнительную возможность изучения свойств ядер на границах стабильности. При касательных столкновениях внешние нуклоны ядра-снаряда могут захватываться ядроммишенью (реакции передачи) или высвобождаться (реакции развала). Для слабосвязанных ядер достаточно хорошо применима обобщенная модель с разделением всех нуклонов на образующие сильносвязанный остов и внешние (валентные) нуклоны. Энергии отделения нуклона от остова существенно превышают энергии отделения валентного нуклона. Примерами таких систем с одним внешним нуклоном являются зеркальные ядра <sup>8</sup>В (остов {<sup>7</sup>Be} и протон с энергией отделения 0.136  $M \rightarrow B$  [1]) и <sup>8</sup>Li (остов {<sup>7</sup>Li} и нейтрон с энергией отделения 2.032 МэВ [1]). Энергии отделения протона от ядра <sup>7</sup>Ве и нейтрона от ядра <sup>7</sup>Li равны 5.607 и 7.251 МэВ соответственно. Возможность рассмотрения поведения одного внешнего нуклона в поле двух силовых центров - неизменных ("замороженных") ядра-мишени и остова ядраснаряда, упрощает теоретическое описание каналов передачи и развала при столкновениях ядер. Распределение плотности слабосвязанных внешних нуклонов заметно отличается от плотности нуклонов остова. Протяженную часть распределения слабосвязанных нуклонов за пределами остова называют гало [2]. Реакции со слабосвязанными ядрами <sup>8</sup>B, <sup>8</sup>Li изучались в работах [3–7]. В качестве ядер-мишеней использовались ядра <sup>58</sup>Ni (реакция <sup>8</sup>B + <sup>58</sup>Ni) [3], <sup>12</sup>C (реакция <sup>8</sup>Li + <sup>12</sup>C) [4], <sup>209</sup>Bi (реакция <sup>8</sup>Li + <sup>209</sup>Bi) [5], <sup>28</sup>Si (реакция <sup>8</sup>Li + <sup>28</sup>Si) [7]. Использование ядер-мишеней <sup>28</sup>Si создает более благоприятные условия для проведения эксперимента, поскольку позволяет совместить мишень и детектор [7–10]. Поэтому в данной работе выполнены расчеты сечения потери внешнего нуклона за счет процессов передачи и развала при касательных столкновениях ядер <sup>8</sup>Li + <sup>28</sup>Si и <sup>8</sup>B + <sup>28</sup>Si.

Для ядра-снаряда характерное значение энергии в лабораторной системе 10 МэВ/нуклон близко к средней кинетической энергии внешнего нуклона [8]. При меньших энергиях, когда средняя скорость нуклонов выше относительной скорости ядер, происходит обобществление внешних нуклонов сблизившимися ядрами с заселением двуцентровых связанных состояний. При больших энергиях, когда средняя скорость внешних нуклонов меньше относительной скорости ядер при их наибольшем сближении, они не успевают перейти из одного ядра в другое. В работе [8] это было показано для внешних нейтронов ядра <sup>9</sup>Li с энергией отделения 4 МэВ [1]. В данной работе исследуются процессы, происходящие при столкновении ядер, внешние нуклоны, которых имеют меньшие значения энергии отделения.

## 1. ТЕОРЕТИЧЕСКИЙ АНАЛИЗ

Численное решение нестационарного уравнения Шредингера с учетом спин-орбитального взаимодействия [11–13] дает возможность наглядного изучения динамики развала слабосвязанных ядер <sup>8</sup>Li и <sup>8</sup>В и передачи внешнего нуклона при их столкновениях с тяжелым ядром-мишенью. Классические уравнения движения центров двух ядер с массами  $m_1$ ,  $m_2$ 

$$m_{1}\ddot{\vec{r}}_{1} = -\nabla_{\vec{r}_{1}}V_{12}\left(|\vec{r}_{1} - \vec{r}_{2}|\right), m_{2}\ddot{\vec{r}}_{2} = -\nabla_{\vec{r}_{2}}V_{12}\left(|\vec{r}_{1} - \vec{r}_{2}|\right)$$
(1)

включают ядро-ядерный потенциал  $V_{12}$ . В расчетах, как и в работах [13–16] использовался потенциал  $V_{12}(r)$  в форме Акьюза–Винтера [17]. Эволюция внешнего нуклона массы *m* в суммарном среднем поле (со спин-орбитальным взаимодействием) сталкивающихся ядер описывается нестационарным уравнением Шредингера [11]

$$i\hbar \frac{\partial}{\partial t} \Psi(\vec{r}, t) = \left\{ -\frac{\hbar^2}{2m} \Delta + V_1(\vec{r}, t) + V_2(\vec{r}, t) + \hat{V}_{LS}^{(1)}(\vec{r}, t) + \hat{V}_{LS}^{(2)}(\vec{r}, t) \right\} \Psi(\vec{r}, t)$$
(2)

для двухкомпонентной волновой функции Ψ, являющейся трехмерным спинором

$$\Psi(\vec{r},t) = \begin{pmatrix} \Psi(\vec{r},t) \\ \varphi(\vec{r},t) \end{pmatrix}.$$
 (3)

Численное решение уравнения (2) в системе центра масс для ряда реакций было получено в работах [11-16]. В данной работе из-за большой протяженности нуклонных "облаков" ядер <sup>8</sup>Li и <sup>8</sup>В численное решение уравнения (2) было выполнено в системе отсчета, движущейся относительно лабораторной системы с постоянной скоростью, равной скорости ядра-снаряда на достаточно большом удалении от ядра-мишени. Это позволило уменьшить размер сетки и сократить время расчетов. При энергиях выше кулоновского барьера в ходе касательных и далеких столкновений с ядром-мишенью смещение ядра-снаряда в такой системе отсчета из начала координат невелико. При расчетах шаг сетки составлял  $h = 0.3 \, \text{фм}$ , типичный объем области составлял 8 · 10<sup>5</sup> фм<sup>3</sup> при размере сетки 220 × 360 × 380 с наибольшим числом узлов в плоскости столкновения. Расчет процесса столкновения ядер требовал выполнения нескольких тысяч шагов по времени. Шаг по времени в безразмерных переменных  $\tau = t/t_0$  изменялся от  $\Delta \tau = 0.1$  (для минимальной энергии) до  $\Delta \tau = 0.05$  (для максимальной энергии). В качестве  $t_0$  было использовано значение  $t_0 = m x_0^2/\hbar$  =  $= 1.57 \cdot 10^{-23}$  с, где  $x_0 = 1$  фм [11]. Основная часть расчетов была выполнена на гетерогенном кластере Лаборатории информационных технологий ОИЯИ [18].

Начальным условием для волновой функции  $\Psi(\vec{r}, t = 0)$  служила волновая функция стационарного состояния  $\Psi_{n,l,j,m_j}$  в среднем поле ядраснаряда, неподвижного в выбранной системе отсчета. Для учета поляризации протонного облака волновая функция  $\Psi_{n,l,j,m_j}$  протона в изолированном ядре-снаряде предварительно подвергалась медленному (адиабатическому) включению кулоновского взаимодействия с ядром-мишенью.

Ядра-снаряды <sup>8</sup>Li и <sup>8</sup>В являются несферическими, экспериментальные значения модуля параметра  $|\beta_2|$  квадрупольной деформации для первого ядра  $0.542 \pm 0.033$ ,  $0.476 \pm 0.075$ ,  $0.526 \pm 0.054$ , для второго ядра  $0.643 \pm 0.045, 0.679 \pm 0.075, 0.627 \pm$  $\pm 0.054$ , знак  $\beta_2$  не определен [19]. Рассмотрим свойства нуклонных состояний для обоих знаков  $\beta_2 > 0, \beta_2 < 0$  в оболочечной модели деформированного ядра. Решение уравнения Шредингера для аксиально-симметричного потенциала может быть выполнено с использованием разложений по функциям Бесселя [11]. В оболочечной модели деформированного ядра 5 нуклонов заселяют последовательно уровни с модулем  $|m_i|$  проекции полного углового момента на ось симметрии ядра  $|m_i| = 1/2, 3/2, 1/2$  для  $\beta_2 < 0$  и  $|m_i| = 1/2, 1/2, 3/2$ для  $\beta_2 > 0$  (см., например, [1]). Плотности вероятности

$$\rho_{n,l,j,m_j}(\vec{r}) = |\psi_{n,l,j,m_j}(\vec{r})|^2 + |\phi_{n,l,j,m_j}(\vec{r})|^2$$
(4)

для внешнего нейтрона ядра <sup>8</sup>Li в состоянии с  $|m_j| = 1/2$  при  $\beta_2 = -0.5$  и в состоянии с  $|m_j| = 3/2$ при  $\beta_2 = 0.5$  показаны на рис. 1*a*, 1*b*, энергии этих состояний одинаковы и равны -2 МэВ. Из-за большой протяженности нейтронного "облака" различие между этими плотностями вероятности в сплюснутом и вытянутом ядрах невелико. В модели сферического ядра при той же энергии -2 МэВ в состоянии  $1p_{3/2}$  с  $|m_j| = 1/2$ , 3/2 (рис. 1*в*, 1*г*) плотности вероятности внешнего нейтрона мало отличаются от распределений на рис. 1а, 1б, усредненных по различным ориентациям деформированного ядра. Это справедливо и для внешнего протона ядра <sup>8</sup>В с меньшей энергией отделения 0.4 МэВ. Поэтому в расчетах для ядер-снарядов <sup>8</sup>Li и <sup>8</sup>В использовалась модель сферического ядра. Для ядра-мишени <sup>28</sup>Si, как и в работах [8, 10] также использовалось приближение сферического ядра. Схемы нейтронных и протонных уровней ядер-снарядов <sup>8</sup>Li, <sup>8</sup>В и ядра-мишени <sup>28</sup>Si в оболочечной модели сферического ядра показаны на рис. 2.



**Рис. 1.** Плотности вероятности в цилиндрической системе координат для внешнего нейтрона ядра <sup>8</sup>Li при значениях параметров деформации  $\beta_2 = -0.5$  (*a*),  $\beta_2 = 0.5$  (*б*) и  $\beta_2 = 0$  (*в*, *г*); значения модуля проекции полного углового момента на ось *z* симметрии деформированного ядра  $|m_j| = 1/2$  (*a*),  $|m_j| = 3/2$  (*б*),  $|m_j| = 1/2$  (*в*),  $|m_j| = 3/2$  (*b*).

Волновые функции

$$\Psi_{n,l,j,m_j}(\vec{r}) = \begin{pmatrix} \Psi_{n,l,j,m_j}(\vec{r}) \\ \varphi_{n,l,j,m_j}(\vec{r}) \end{pmatrix}$$
(5)

оболочечной модели сферического ядра для состояний с квантовыми числами  $n, l, j, m_j = -j, ... j$  и с условием нормировки

$$\int \left[ \left| \Psi_{n,l,j,m_j}(\vec{r}) \right|^2 + \left| \varphi_{n,l,j,m_j}(\vec{r}) \right|^2 \right] dV = 1, \quad (6)$$

определялись с использованием потенциала среднего поля в форме Вудса—Саксона так же, как в работах [11—16]. Значения параметров среднего поля оболочечной модели были выбраны из условия соответствия теоретических значений среднеквадратичного зарядового радиуса и энергий отделения протонов и нейтронов экспериментальным данным (см., например, [1]).

### 2. РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Начальными условиями для внешнего нейтрона ядра <sup>8</sup>Li и внешнего протона ядра <sup>8</sup>В являлись волновые функции

$$\Psi_{m_{j}}(\vec{r},t=0) = \begin{pmatrix} \Psi_{m_{j}}(\vec{r},t=0) \\ \varphi_{m_{j}}(\vec{r},t=0) \end{pmatrix} = \\ = \begin{pmatrix} \Psi_{m_{j}}^{(0)}(\vec{r}) \\ \varphi_{m_{j}}^{(0)}(\vec{r}) \end{pmatrix} = \begin{pmatrix} \Psi_{1,1,3/2,m_{j}}(\vec{r}) \\ \varphi_{1,1,3/2,m_{j}}(\vec{r}) \end{pmatrix}.$$
(7)

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020



**Рис. 2.** Схемы нейтронных (*a*) и протонных (*б*) уровней энергии (МэВ) ядер снарядов <sup>8</sup>Li, <sup>8</sup>В и ядра-мишени <sup>28</sup>Si в оболочечной модели сферического ядра.

Примеры эволюции плотности вероятности

$$\rho(\vec{r},t) = \frac{1}{4} \sum_{m_j=-3/2}^{3/2} \left[ \left| \Psi_{m_j}(\vec{r},t) \right|^2 + \left| \varphi_{m_j}(\vec{r},t) \right|^2 \right]$$
(8)

внешнего нейтрона ядра <sup>8</sup>Li при столкновении с ядром <sup>28</sup>Si показаны на рис. 3 для энергий в системе центра масс  $E_{c.m.} = 10$  МэВ (рис. 3a-3a) и  $E_{c.m.} =$ = 186 МэВ (рис. 3c-3d). Первое значение энергии немного превышает высоту кулоновского барьера  $V_B = 6.65$  МэВ и соответствует энергии в лабораторной системе  $E_{lab} = 1.6$  МэВ/нуклон. Второе значение соответствует энергии в лабораторной системе  $E_{lab} = 30$  МэВ/нуклон. Представленные результаты получены усреднением по значениям



**Рис. 3.** Эволюция плотности вероятности внешнего нейтрона ядра <sup>8</sup>Li с начальным состоянием  $1p_{3/2}$  при столкновении ядер <sup>8</sup>Li + <sup>28</sup>Si для энергии  $E_{c.m.} = 10$  МэВ,  $E_{lab} = 1.6$  МэВ/нуклон и прицельного параметра  $b = 10 \ фm$  ( $a, \delta, e$ ) и для  $E_{c.m.} = 186$  МэВ,  $E_{lab} = 30$  МэВ/нуклон,  $b = 9 \ фm$  ( $e, \partial, e$ ) в системе отсчета, движущейся относительно лабораторной системы с постоянной скоростью, равной скорости ядра-снаряда на достаточно большом удалении от ядра-мишени. Ходу времени соответствует направление сверху-вниз. Градации серого цвета в логарифмическом масштабе соответствуют диапазонам от  $5 \cdot 10^{-10}$  до 0.008 ( $a, \delta, e, d$ ) и от  $2 \cdot 10^{-7}$  до 0.008 (e, e). Радиусы окружностей соответствуют радиусам ядерных остов 2.4 и 3.8 фм.

проекции  $m_j$  полного углового момента, поэтому начальная форма нейтронного облака была сферически симметрична. Медленному по сравнению с движением внешнего нейтрона относительному движению ядер соответствуют результаты на рис. 3a-3e. В этом случае с большой вероятностью происходит обобществление внешнего нейтрона обоими сталкивающимися ядрами с заселением двуцентровых связанных состояний. При расхождении ядер двуцентровые состояния, в основном, разделяются между ядрами и с меньшей вероятностью трансформируются в состояния свободного нейтрона (рис. 36). При больших энергиях (рис. 3e-3e) средняя скорость внешних



**Рис.** 4. Эволюция плотности вероятности внешнего протона ядра <sup>8</sup>B с начальным состоянием  $1p_{3/2}$  при столкновении ядер <sup>8</sup>B + <sup>28</sup>Siдля энергии  $E_{c.m.} = 25$  MэB,  $E_{lab} = 4$  MэB/нуклон и прицельного параметра b = 8 фм ( $a, \delta, e$ ) и для  $E_{c.m.} = 62$  МэB,  $E_{lab} = 10$  МэB/нуклон, b = 9 фм ( $c, \partial, e$ ) в системе отсчета, движущейся относительно лабораторной системы с постоянной скоростью, равной скорости ядра-снаряда на достаточно большом удалении от ядра-мишени. Хо-ду времени соответствует направление сверху-вниз. Градации серого цвета в логарифмическом масштабе соответствуют диапазонам от  $10^{-7}$  до 0.006 ( $a, \delta, e, \partial$ ) и от  $10^{-6}$  до 0.008 (e, e). Радиусы окружностей соответствуют радиусам ядерных остов 2.4 и 3.8 фм.

нуклонов меньше относительной скорости ядер при их наибольшем сближении, и они не успевают перейти из одного ядра в другое. Вероятность передачи нейтрона на рис. Зе существенно меньше, чем на рис. Зе, а вероятность развала ядра <sup>8</sup>Li на ядро <sup>7</sup>Li и свободный нейтрон существенно выше. Примеры эволюции плотности вероятности внешнего протона ядра <sup>8</sup>B при столкновении <sup>8</sup>B + <sup>28</sup>Si показаны на рис. 4 для энергии  $E_{c.m.} = 25$  МэB,  $E_{lab} =$ = 4 МэB/нуклон (a, b, e) и  $E_{c.m.} = 62$  МэB,  $E_{lab} =$ = 10 МэB/нуклон. Распределения плотности вероятности показывают, что вероятность развала ядра-снаряда не мала при указанных энергиях. Амплитуда вероятности сохранения нуклона в начальном состоянии  $1p_{3/2}$  ядра-снаряда в момент времени *t* равна

- 1-

$$c(t) = \sum_{n_j=-3/2}^{3/2} \frac{1}{4} \times$$

$$\times \sum_{m_j=3/2}^{3/2} \int \left[ \tilde{\Psi}_{n_j}^{(0)*}(\vec{r},t) \Psi_{m_j}(\vec{r},t) + \tilde{\varphi}_{n_j}^{(0)*}(\vec{r},t) \varphi_{m_j}(\vec{r},t) \right] dV,$$
(9)

где волновая функция состояния  $1p_{3/2}$  с проекцией полного момента  $m_j$  в ядре-снаряде, движущемся с медленно меняющейся скоростью  $\vec{v}_1(t)$ 

$$\begin{split} \tilde{\Psi}_{m_{j}}^{(0)}(\vec{r},t) &= \begin{pmatrix} \tilde{\Psi}_{m_{j}}^{(0)}(\vec{r},t) \\ \varphi_{m_{j}}^{(0)}(\vec{r},t) \end{pmatrix} = \\ &= \begin{pmatrix} \Psi_{m_{j}}^{(0)}(\vec{r}-\vec{r}_{1}(t)) \\ \varphi_{m_{j}}^{(0)}(\vec{r}-\vec{r}_{1}(t)) \end{pmatrix} \exp\left(i\hbar^{-1}m\vec{v}_{1}(t)\vec{r}\right). \end{split}$$
(10)

Полную вероятность потери нейтрона  $P_{loss}$  ядромснарядом можно определить, как уменьшение заселенности состояния  $1p_{3/2}$ 

$$P_{loss}(t) = 1 - |c(t)|^2$$
(11)

при временах, соответствующих разлету сталкивающихся ядер  $P_{loss} = \lim_{t \to \infty} P_{loss}(t)$ . Для неподвижного изолированного ядра-снаряда при выполнении большого (~10<sup>3</sup>) числа шагов по времени в ходе компьютерных расчетов, величина (11) оказалась достаточно малой  $P_{loss}^{(s)} \approx 3 \cdot 10^{-4}$ . Это значение может служить оценкой абсолютной погрешности расчета, поэтому достоверным считались значения вероятности  $P_{loss} \ge 10^{-3}$ .

Волновая функция k-го связанного состояния в ядре-мишени, движущемся после столкновения с медленно меняющейся скоростью  $\vec{v}_2(t)$ , равна

$$\begin{split} \tilde{\Psi}_{k}(\vec{r},t) &= \begin{pmatrix} \tilde{\Psi}_{k}(\vec{r},t) \\ \tilde{\varphi}_{k}(\vec{r},t) \end{pmatrix} = \\ &= \begin{pmatrix} \Psi_{k}\left(\vec{r}-\vec{r}_{2}(t)\right) \\ \varphi_{k}\left(\vec{r}-\vec{r}_{2}(t)\right) \end{pmatrix} \exp\left(i\hbar^{-1}m\vec{v}_{2}(t)\vec{r}\right). \end{split}$$
(12)

Величина

$$a_k(t) = \int \left[ \tilde{\psi}_k^*(\vec{r}, t) \psi(\vec{r}, t) + \tilde{\varphi}_k^*(\vec{r}, t) \varphi(\vec{r}, t) \right] dV \quad (13)$$

имеет смысл амплитуды вероятности заселения этого состояния в ходе столкновения при достаточно больших межъядерных расстояниях. Сумма квадратов модулей амплитуд (13) для четырех незанятых до столкновения нейтронных состояний ядра-мишени <sup>28</sup>Si,  $k = \{2s_{1/2}, 1d_{3/2}, 1f_{7/2}, 2p_{3/2}\}$  и для трех протонных состояний (см. рис. 2),

$$P_{tr}(t) = \sum_{k} |a_{k}(t)|^{2}, \qquad (14)$$

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ том 84 № 8 2020



Рис. 5. Зависимость от безразмерного времени  $\tau = t/t_0$ ,  $t_0 = 1.57 \cdot 10^{-23}$  с величин  $P_{loss}(\tau)$  (сплошные кривые) и  $P_{tr}(\tau)$  (штриховые кривые) для столкновений ядер <sup>8</sup>Li + <sup>28</sup>Si (*a*) и <sup>8</sup>B + <sup>28</sup>Si (*b*) для энергий  $E_{c.m.} = 10$  МэВ,  $E_{lab} = 1.6$  МэВ/нуклон (*a*),  $E_{c.m.} = 25$  МэВ,  $E_{lab} = 4$  МэВ/нуклон (*b*) и прицельных параметрах: (*a*) b = 7 фм (кривые *I*), b = 10 фм (кривые *2*), b = 13 фм (кривые *3*); (*b*) b = 7 фм (кривые *I*), b = 8 фм (кривые *2*), b = 10 фм (кривые *3*).

для времен, соответствующих разлету ядер дает вероятность передачи внешнего нуклона от ядра-снаряда ядру-мишени. Полную вероятность передачи нуклона  $P_{tr}$  можно определить как  $P_{tr} = \lim_{t\to\infty} P_{tr}(t)$ , при этом достоверными считались значения вероятности  $P_{tr} \ge 10^{-4}$ . Типичные зависимости от безразмерного времени  $\tau = t/t_0$  величин  $P_{loss}(\tau)$  и  $P_{tr}(\tau)$  для столкновений <sup>8</sup>Li + <sup>28</sup>Si и <sup>8</sup>B + + <sup>28</sup>Si показаны на рис. 5. Из-за кулоновского отталкивания доля вероятности передачи внешнего протона ядра <sup>8</sup>B ядру-мишени в общей вероятности его потери существенно меньше такой же до-



Рис. 6. Зависимости от энергии в системе центра масс  $E_{c.m.}$  коэффициентов  $A_{loss}$ ,  $A_{tr}$  (*a*) и  $B_{loss}$ ,  $B_{tr}$  (*б*) для столкновений ядер <sup>8</sup>Li + <sup>28</sup>Si  $A_{loss}$ ,  $B_{loss}$  (сплошные кривые),  $A_{tr}$ ,  $B_{tr}$  (штрихпунктирные кривые), и <sup>8</sup>B + <sup>28</sup>Si  $A_{loss}$ ,  $B_{loss}$  (штриховые кривые),  $A_{tr}$ ,  $B_{tr}$  (точечные кривые) ( $\delta$ ); пустые кружки – результаты расчета для <sup>8</sup>Li + <sup>28</sup>Si, сплошные кружки – для <sup>8</sup>B + <sup>28</sup>Si, кривые – результаты сглаживания кубичными сплайнами.

ли в общей вероятности потери внешнего нейтрона ядра <sup>8</sup>Li.

Касанию поверхностей остовов {<sup>7</sup>Li}, {<sup>7</sup>Be} ядер-снарядов <sup>8</sup>Li, <sup>8</sup>В радиусом  $R_1$  и ядра-мишени радиуса  $R_2$  можно сопоставить траектории с минимальным расстоянием между их центрами  $R_{min} = R_{cont} = R_1 + R_2 = r_0 (7^{1/3} + 28^{1/3})$ , при  $r_0 =$ = 1.25 фм  $R_{cont} = 6.2$  фм. Расчеты показали, что при  $R_{min} > R_{cont}$  зависимость от  $R_{min}$  вероятности передачи нуклона  $\tilde{P}_{tr}$  может быть аппроксимирована выражением

$$P_{tr} \approx \tilde{P}_{tr} \left( R_{min} \right) = \exp \left( A_{tr} - B_{tr} R_{min} \right).$$
(15)

Подобные зависимости были получены ранее для вероятностей нейтронных и протонных передач в реакциях с участием ядер <sup>3</sup>He, <sup>6</sup>He и <sup>18</sup>O [11–16]. Зависимость от  $R_{min}$  рассчитанной вероятности потери внешнего нейтрона ядром-снарядом также может быть аппроксимирована аналогичным выражением

$$P_{loss} \approx \tilde{P}_{loss}(R_{min}) = \exp(A_{loss} - B_{loss}R_{min}).$$
 (16)

Зависимости от энергии в системе центра масс  $E_{c.m.}$  коэффициентов  $A_{tr}$ ,  $B_{tr}$ ,  $A_{loss}$ ,  $B_{loss}$  для столкновений <sup>8</sup>Li + <sup>28</sup>Si и <sup>8</sup>B + <sup>28</sup>Si показаны на рис. 6, при этом для реакции <sup>8</sup>Li + <sup>28</sup>Si значение параметра  $B_{loss}$  остается постоянным  $B_{loss} = 0.78 \text{ фм}^{-1}$  на всем интервале от  $E_{c.m.} = 10 \text{ МэВ до } E_{c.m.} = 190 \text{ МэВ}$ .

Сечения потери внешнего нуклона  $\sigma_{loss}$  ядромснарядом и передачи внешнего нуклона ядраснаряда ядру мишени были вычислены интегрированием по прицельным параметрам касательных столкновений  $b > b_{min}$ 

$$\sigma_{loss}(E) = 2\pi \int_{b_{min}}^{\infty} p_{loss}(b, E) [1 - f(R_{min})] b db, \quad (17)$$

$$\sigma_{tr}(E) = 2\pi \int_{b_{min}}^{\infty} p_{tr}(b, E) [1 - f(R_{min})] b db, \qquad (18)$$

$$p_{tr}(b,E) = \min\left\{\tilde{P}_{tr}\left(R_{min}(b,E)\right),1\right\},$$
(19)

$$p_{tr}(b,E) = \min\left\{\tilde{P}_{tr}(R_{min}(b,E)),1\right\}.$$
 (20)

Здесь прицельный параметр  $b_{min}$  соответствует траектории, приводящей к полному захвату остова ядра-снаряда ядром-мишенью при  $R_{min} = R_1 - R_2 =$ = 1.4 фм,  $f(R_{min})$  — вероятность слияния ядер. Для функции  $f(R_{min})$  справедливы свойства  $f(R_{min}) \rightarrow$  $\rightarrow$  1,  $R_{min} < R_{cont}$ ,  $f(R_{min}) \rightarrow 0$ ,  $R_{min} > R_B$ , где  $R_B$  радиус вершины кулоновского барьера,  $R_B = 8$  фм для ядер  ${}^8B + {}^{28}Si$  и  $R_B = 8.4$  фм для ядер  ${}^8Li + {}^{28}Si$ . Эти свойства позволяют использовать для вероятности слияния ядер простую аппроксимацию

$$f(R_{min}) = \frac{1}{1 + \exp\left(\frac{R_{min} - R_f}{a_f}\right)}$$
(21)

с естественным набором параметров

1

$$R_f \approx \frac{1}{2} (R_{cont} + R_{\rm B}), \quad a_f \approx \frac{1}{2} (R_{\rm B} - R_{cont}), \qquad (22)$$

в данном случае  $R_f = 7 \, \text{фм}, \, a_f = 1 \, \text{фм}. \, \text{С}$  другой стороны, средний радиус слияния ядер  $R_f$  можно рассматривать как варьируемую величину, значение которой находится из условия близости результатов расчетов к экспериментальным данным. На рис. 7а показаны результаты расчета сечения потери внешнего нейтрона ядром <sup>8</sup>Li  $\sigma_{loss}(E_{c.m})$  для двух значений радиуса  $R_f$ . Для первого (естественного) значения  $R_f = 7 \, \text{фм се-}$ чение потери нейтрона оказались ниже экспериментального значения из работы [7]  $\sigma_{loss} = 590 \pm$ ± 60 мб при энергии в лабораторной системе  $E_{\text{lab}} = 29.4 \text{ МэВ/нуклон} (E_{c.m.} = 183 \text{ МэВ}). Второе$ значение радиуса  $R_f = R_2 + 1.1 \, \text{фм} = 4.9 \, \text{фм} < R_{cont}$ было подобрано из условия совпадения расчетного значения сечения с экспериментальным. Лучшее согласие с экспериментальным значением при меньшем значении среднего радиуса слияния ядер  $R_f$  можно интерпретировать как сохранение с большой вероятностью остова ядра-снаряда {<sup>7</sup>Li} даже при частичным перекрытием его объема с объемом ядра-мишени. В свою очередь это можно объяснить структурой ядра <sup>7</sup>Li, состоящего из сильно связанного кластера {<sup>4</sup>He} и кластера  ${^{3}H}$  [20].

Сечение передачи нейтрона  $\sigma_{tr}$  при энергиях меньших, чем  $E_{c.m.} = 25$  МэВ,  $E_{lab} = 4$  МэВ/нуклон составляет основной вклад в сечение потери нейтрона ядром <sup>8</sup>Li, сечение развала значительно меньше. С ростом энергии сечение передачи уменьшается, поскольку нейтрон не успевает перейти с ядра-снаряда на ядро-мишень за время близкого контакта ядер, и при энергии  $E_{c.m.} \approx 186$  МэВ,  $E_{lab} \approx 30$  МэВ/нуклон сечения передачи и развала соизмеримы.

Результаты расчета сечения потери  $\sigma_{loss}(E_{c.m.})$ внешнего протона ядром <sup>8</sup>В для двух значений среднего радиуса слияния  $R_f = 7 \, \text{фм}$  и  $R_f = 4.9 \, \text{фм}$ показаны на рис. 76. По аналогии с реакцией <sup>8</sup>Li + + <sup>28</sup>Si можно предсказать, что экспериментальные значения сечения для реакции  ${}^{8}B + {}^{28}Si$  окажутся между этими кривыми, но ближе к результатам для  $R_f = 4.9$  фм. Сечение передачи протона много меньше сечения развала из-за кулоновского отталкивания при околобарьерных энергиях  $E_{c.m.} < 12 \text{ МэВ}, E_{lab} < 2 \text{ МэВ/нуклон. При энергиях} E_{c.m.} > 44 \text{ МэВ}, E_{lab} > 7 \text{ МэВ/нуклон сечение пере-$ дачи протона с ростом энергии уменьшается, каки в случае передачи нейтрона в реакции  ${}^{8}\text{Li} + {}^{28}\text{Si}$ . При энергиях до 7 МэВ/нуклон сечение передачи возрастает с ростом энергии, кулоновское отталкивание не успевает оказать сдерживающее влияние на процесс передачи из-за сокращения времени столкновения.



Рис. 7. Результаты расчета сечения потери  $\sigma_{loss}(E_{c.m.})$ и сечения передачи  $\sigma_{tr}(E_{c.m.})$  внешнего нейтрона ядра <sup>8</sup>Li в реакции <sup>8</sup>Li + <sup>28</sup>Si (*a*) и внешнего протона ядра <sup>8</sup>B в реакции <sup>8</sup>B + <sup>28</sup>Si (*b*) для двух значений среднего радиуса слияния ядер  $R_f: R_f = 7 \ \phi M \ \sigma_{loss}(E_{c.m.})$ штриховые кривые,  $\sigma_{tr}(E_{c.m.})$  – точечные кривые и  $R_f = 4.9 \ \phi M \ \sigma_{loss}(E_{c.m.})$  – сплошные кривые,  $\sigma_{tr}(E_{c.m.})$  – штрихпунктирные кривые, экспериментальная точка – значение  $\sigma_{loss}(E_{c.m.})$  для реакции <sup>8</sup>Li + <sup>28</sup>Si из работы [7].

#### ЗАКЛЮЧЕНИЕ

Нестационарный квантовый подход применен для описания процессов передачи и развала слабосвязанных легких ядер <sup>8</sup>Li, <sup>8</sup>В при низкоэнергетических ядро-ядерных столкновениях с ядром <sup>28</sup>Si. Согласие с экспериментальными данными для сечения развала в реакции <sup>8</sup>Li + <sup>28</sup>Si получено при допущении, что остов ядра-снаряда {<sup>7</sup>Li} сохраняется при прохождении рядом с ядром <sup>28</sup>Si с частичным перекрытием их объемов. Использованный в работе метод может быть полезен при исследовании реакций развала и передачи с участием ядер со слабосвязанными нуклонами.

Автор выражает благодарность команде гетерогенного кластера Лаборатории информационных технологий ОИЯИ за содействие выполнению трудоемких компьютерных расчетов.

## СПИСОК ЛИТЕРАТУРЫ

- 1. http://nrv.jinr.ru.
- 2. Jonson B. // Nucl. Phys. A. 1994. V. 574. P. 151.
- 3. Aguilera E.F., Martinez-Quiroz E., Lizcano D. et al. // Phys. Rev. C. 2009. V. 79. Art. № 021617.
- 4. *Barioni A., Guimarães V., Lépine-Szily A. et al.* // Phys. Rev. C. 2009 V. 80. Art. № 034601(R).
- 5. Sengupta C., Cook K. J., Simpson E.C. et al. // EPJ Web Conf. 2020. V. 227. Art. № 02010.
- Kolata J.J., Guimarães V., Aguilera E.F. // Eur. Phys. J. A. 2016. V. 52. P. 123.
- Hue B.M., Isataev T., Lukyanov S.M. et al. // Euras. J. Phys. Func. Materials. 2017. V. 1(2). P. 65.
- Пенионжкевич Ю.Э., Соболев Ю.Г., Самарин В.В., Науменко М.А. // ЯФ. 2017. Т. 80. С. 525; Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V., Naumenko M.A. // Phys. Atom. Nucl. 2017. V. 80. Р. 928.
- Соболев Ю.Г., Пенионжкевич Ю.Э., Маслов В.А. и др. // Изв. РАН. Сер. физ. 2019. Т. 83. С. 451;

Sobolev Yu.G., Penionzhkevich Yu.E., Maslov V.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. P. 402.

- 10. Penionzhkevich Yu.E., Sobolev Yu.G., Samarin V.V. et al. // Phys. Rev. C. 2019. V. 99. Art. № 014609.
- Самарин В.В. // ЯФ. 2015. Т. 78. С. 133; Samarin V.V. // Phys. Atom. Nucl. 2015. V. 78. P. 128.
- 12. Самарин В.В. // ЯФ. 2015. Т. 78. С. 916; Samarin V.V. // Phys. Atom. Nucl. 2015. V. 78. P. 861.
- 13. Самарин В.В. // ЯФ. 2018. Т. 81. С. 458; Samarin V.V. // Phys. Atom. Nucl. 2018. V. 81. P. 486.
- Науменко М.А., Самарин В.В., Пенионжкевич Ю.Э., Скобелев Н.К. // Изв. РАН. Сер. физ. 2016. Т. 80. С. 294; Naumenko М.А., Samarin V.V., Penionzhkevich Yu.E., Skobelev N.K. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. P. 264.
- Науменко М.А., Самарин В.В., Пенионжкевич Ю.Э., Скобелев Н.К. // Изв. РАН. Сер. физ. 2017. Т. 81. С. 784; Naumenko М.А., Samarin V.V., Penionzhkevich Yu.E., Skobelev N.K. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. P. 710.
- Самарин В.В., Пенионжкевич Ю.Э., Науменко М.А., Скобелев Н.К. // Изв. РАН. Сер. физ. 2018. Т. 82.
   Р. 723; Samarin V.V., Penionzhkevich Yu.E., Naumenko M.A., Skobelev N.K. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. P. 637.
- 17. Winther A. // Nucl. Phys. A. 1994. V. 572. P. 191.
- 18. http://hybrilit.jinr.ru.
- 19. http://cdfe.sinp.msu.ru/services/radchart/radmain.html.
- Самарин В.В., Науменко М.А. // Изв. РАН Сер. физ. 2018. Т. 83. Р. 460; Samarin V.V., Naumenko М.А. // Bull. Russ. Acad. Sci. Phys. 2018. V. 83. P. 411.