УДК 539.143

ОПИСАНИЕ МАССОВОЙ ПОВЕРХНОСТИ НЕЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДЕР И ПАРНЫЕ ЭНЕРГИИ

© 2020 г. А. К. Власников^{1, *}, А. И. Зиппа¹, В. М. Михайлов¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Санкт-Петербургский государственный университет", Санкт-Петербург, Россия

> **E-mail: a.vlasnikov@spbu.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

Исследована массовая поверхность нечетных ядер, представленная как полиномы второго порядков по отклонениям от N и Z нечетного ядра. Показано, что значения коэффициентов полиномов зависят от группы атомных ядер в окрестностях N и Z, по которой определяются эти коэффициенты.

DOI: 10.31857/S0367676520080335

введение

Описание массовой поверхности вблизи некоторого атомного ядра с массовым числом А и числами нейтронов N и протонов Z представляет интерес с нескольких точек зрения. Если такая гладкая поверхность существует в аналитическом виде, то возможны определенные предсказания неизвестных масс с числом нуклонов, не слишком удаленных от N и Z. Существование такой массовой поверхности вокруг нечетного ядра, описываемой аналитической формулой, позволяет найти парную энергию P_{τ} ($\tau = n, p$), определяемую как превышение массы нечетного ядра над соседними четно-четными. Величину этого превышения может дать аналитическое описание в точке, соответствующей N и Z нечетного ядра. Таким образом можно вычислить некоторую "гладкую" составляющую компоненту массы нечетного ядра \mathcal{M} , от которой необходимо отсчитывать, чтобы получить парную энергию:

$$M(N_{\rm H},Z) = \mathcal{M}(N_{\rm H},Z) + P_n(N_{\rm H},Z); \qquad (1)$$

$$M(N, Z_{\rm H}) = \mathcal{M}(N, Z_{\rm H}) + P_p(N, Z_{\rm H}).$$
(2)

Уравнение (1) соответствует нечетно-нейтронному ядру, уравнение (2) — нечетно-протонному. $N_{\rm H}, Z_{\rm H}$ — нечетные числа; N, Z — четные.

В этой статье рассматривается возможность описания массовый поверхности с учетом линейных и квадратичных отклонений от N и Z, что способствует получению достоверных парных энергий, необходимых для уточнения выбора эффективных взаимодействий в частично-частичном канале [1–3].

В литературе используются разные определения парной энергии через массы ядер. Например, нейтронные парные энергии P_n обычно вычисляют с массами ядер при фиксированном четном Z(см. [4]):

$$P_n = [3M(N-1,Z) + M(N+1,Z) - - M(N-2,Z) - 3M(N,Z)]/4,$$
(3)

здесь N и Z – четные числа.

В определение парной нейтронной энергии (3) входят две массы нечетного ядра M(N + 1, Z) и M(N - 1, Z), т.е. усредняются P_n для двух нечетных ядер. Предложенное в [5] уравнение позволяет фиксировать квантовое состояние нечетного наклона

$$P_{n} = M(N_{\rm H}, Z) - -\frac{1}{16} \{9[M(N_{\rm H} + 1, Z) + M(N_{\rm H} - 1, Z)] - (4) - [M(N_{\rm H} + 3, Z) + M(N_{\rm H} - 3, Z)]\}$$

 $(N_{\rm H} -$ нечетное, Z - четное, как и в (1)). Применение (4) показало, что парные энергии нечетнонейтронных ядер с $N_{\rm H}$ и $N_{\rm H}$ + 2 отличаются на ~100 кэВ и более [5].

Уравнения (3), (4) используют предположение, что массы четно-четных ядер, соседних с нечетными, изменяются довольно плавно с $N \, u \, Z$, и если бы не P_{τ} , то масса нечетного ядра могла бы быть вычислена из этих масс четно-четных ядер. Это предположение было формализовано в [6], когда масса ядра с N + s и Z + t (s и t предполагаОПИСАНИЕ МАССОВОЙ ПОВЕРХНОСТИ

ются малыми: |s/N| < 1 и |t/Z| < 1) была представлена в виде ряда по степеням *s* и *t*:

$$M(N + s, Z + t) =$$

$$= M(N, Z) + \sum_{\substack{i,k=0,1,2,...\\i+k>0}} d_{inkp} \frac{s^{i}t^{k}}{i!k!}.$$
(5)

Уравнение (5) справедливо и при разложении энергии ядра E(N+s, Z+t) при замене M(N, Z) на E(N, Z), а d_{1n0p} на \overline{d}_{1n0p} и d_{0n1p} на \overline{d}_{0n1p}

$$\overline{d}_{1n0p} = -m_n + d_{1n0p}; \ \overline{d}_{0n1p} = -m_p + d_{0n1p}.$$
(6)

Далее обозначим $d_{in0p} \equiv d_{in}$; $d_{0nkp} \equiv d_{kp}$. Всем параметрам может быть приписан порядок, равный i + k, так что d_{1n}, d_{1p} являются параметрами первого порядка, а d_{1n1p} – второго и так далее. Параметры будут называться четными, если i + k – четное число, и нечетными, если i + k – нечетное число. Четно-четными и нечетно-нечетными будут соответственно называться параметры $d_{2\mu n 2\nu p}$ и $d_{2\mu + 1n 2\nu + 1p}$.

"Гладкая" масса *М* нечетного ядра может появиться в разложении для четно-четного ядра, если разложение по s и t (5) проводится около точки N, Z, соответствующих нечетному ядру. Например, если s — нечетное число, то

$$M(N_{\rm H} + s, Z) = M(N_{\rm H}, Z) + sd_{\rm ln}(N_{\rm H}, Z) + \dots$$
(7)

Легко проверить, что определение P_n (3) не содержит d_{1n} и d_{2n} , а для $P_p - d_{1p}$ и d_{2p} . В то же время определение в (4) исключает все нечетные параметры, а среди четных $-d_{2\tau}$.

Возможность описать массовую поверхность, основываясь на уравнении (5) с учетом того или иного порядка параметров, предполагает, что эти параметры будут близки по величине при определении по разным группам ядер, не слишком далеких от N и Z, около которых производится разложение (5). Однако исследование ряда четно-четных ядер [7] показывают, что параметры *d*_{inkp} при $i \neq 0, k \neq 0$ существенно различаются при определении по разным группам ядер, за исключением d_{1n1p} .

В настоящей статье для массовой поверхности нечетных ядер мы ограничились учетом параметров до второго порядка, причем рассматриваются две группы ядер для установления параметров массовой поверхности. Одна – с фиксированным четным Z для нечетно-нейтронных ядер (четным N для нечетно-протонных), в этой группе к нечетному нуклону добавляется или отделяется нечетное число нуклонов ($\pm 1, \pm 3$), так что вычисления параметров происходит с массами четно-четных ядер. Во второй группе ядер для нечетнонейтронных ядер изменяется Z на ± 2 , ± 4 единиц (для нечетно-протонных изменяется N на те же единицы). Формулы, по которым вычисляются параметры, даны в следующем разделе. В последнем разделе приводятся численные значения параметров и дается обсуждение полученных результатов.

ПРИБЛИЖЕНИЯ К МАССОВОЙ ПОВЕРХНОСТИ И СООТВЕТСТВУЮЩИЕ ФОРМУЛЫ ДЛЯ "ГЛАДКОЙ" СОСТАВЛЯЮЩЕЙ МАССЫ НЕЧЕТНОГО ЯДРА \mathcal{M} И ДЛЯ ПАРАМЕТРОВ *d*_{inkp} ЧЕРЕЗ МАССЫ ЧЕТНО-ЧЕТНЫХ ЯДЕР

Как упоминалось во введении, параметры массовой поверхности определяются для двух групп ядер. В каждой из них рассматриваются приближения к массовой поверхности, содержащие параметры не выше второго порядка.

Первая группа ядер сохраняет для нечетнонейтронных ядер четное неизменное Z, для нечетно-протонных — четное N.

Приближение А

В приближении А (А) для нечетно-нейтронных ядер N равны $N_{\rm H} \pm 1$ и $N_{\rm H} \pm 3$, для нечетнопротонных Z равны $Z_{\rm H} \pm 1$ и $Z_{\rm H} \pm 3$. В этом приближении необходимо найти 3 параметра $\mathcal{M}, d_{1\tau},$ $d_{2\tau}$ ($\tau = n$ для нечетно-нейтронных ядер, $\tau = p$ для нечетно-протонных).

Во вторую группу ядер входят для нечетнонейтронных ядер Z, отличающиеся от Z нечетного ядра на четные числа, для нечетно-протонных аналогичная ситуация с *N*.

Приближение Б

В приближении Б (Б) $Z \pm 2, Z \pm 4$ для нечетнонейтронных ядер, при этом $N_{\rm H} \pm 1$ и $N_{\rm H} \pm 3$. Соответствующие N и Z выбираются для нечетно-протонных ядер. В Б можно найти все параметры первого и второго порядка: \mathcal{M} , d_{1n} , d_{1p} , d_{2n} , d_{2p} , d_{1n1n} , т.е. 6 параметров.

Ниже, так же как в [7], для определения параметров вводятся комбинации масс, содержащие четные параметры e(s, t), и нечетные o(s, t). Переменные *s* и *t* могут быть отрицательными, нулями и положительными. М можно считать четным параметром, формально $\mathcal{M} = d_{0n0p}$. Уравнения для e(s, t) и o(s, t) записаны вплоть до второго порядка.

$$e(s,t) = M(N + s, Z + t) + + M(N - s, Z - t) = 2M(N, Z) + + s2d2n + t2d2p + 2std1n1p;o(s,t) = M(N + s, Z + t) - - M(N - s, Z - t) = 2sd1n + 2td1p. (9)$$

Таблица 1. Нечетные параметры $\overline{d}_{1\tau}$ (кэВ), $\overline{d}_{1\tau} = d_{1\tau} - m_{\tau}$ и четные параметры $d_{2\tau}$ (кэВ) в приближениях А и Б (см. текст). Для нечетных параметров в каждом приближении приведены два значения, вычисленные с использованием четно-четных масс с различными массовыми числами

			А			Б		
Α	Ζ	τ	$\overline{d}_{1\tau}\left(\Delta A=1\right)$	$\overline{d}_{1\tau}\left(\Delta A=3\right)$	$d_{2\tau}$	$\overline{d}_{1\tau}\left(\Delta A=1\right)$	$\overline{d}_{1\tau}\left(\Delta A=3\right)$	$d_{2\tau}$
157	64	п	-7148.58(0.90)	-7110.62(0.30)	196.98(0.32)	-7013.4(2.5)	-7104(10)	203.5(2.3)
165	67	р	-6768.05(0.70)	-6839.20(0.79)	628.98(0.55)	-6921(41)	-6855(23)	597(20)
171	70	п	-7337.13(0.09)	-7298.42(0.20)	186.63(0.14)	-7202.1(9.3)	-7078(24)	181.1(7.0)
175	71	р	-6104.90(0.70)	-6276.2(2.6)	578.9(2.0)	-6380(85)	-6133.3(3.1)	552(44)
179	72	п	-6743.4(1.0)	-6550.2(1.1)	198.58(0.83)	-6612(90)	-6660(59)	236(44)

Эти уравнения применимы к четно-четным и нечетным ядрам. В последнем случае под M(N, Z) надо понимать \mathcal{M} .

Ниже даны уравнения для \mathcal{M} и параметров нечетно-нейтронного ядра в А и Б. Уравнения для нечетно-протонного ядра получаются при заменах $N \leftrightarrow Z$ (в частности $N_{\rm H} \leftrightarrow Z_{\rm H}$), а также $n \leftrightarrow p$, $s \leftrightarrow t$, и перестановкой: нейтронные числа должны быть первыми.

Для A:
$$s = \pm 1, \pm 3; t = 0; \Delta A = |s| = 1; 3.$$

$$\mathcal{M}(N_{\rm H}, Z) = [9e(1,0) - e(3,0)]/16;$$

$$P_n(N_{\rm H}, Z) = \mathcal{M}(N_{\rm H}, Z) - \mathcal{M}(N_{\rm H}, Z),$$
(10)

см. уравнения (1), (2).

$$d_{2n}(N_{\rm H},Z) = [e(3,0) - e(1,0)]/8.$$
(11)

В уравнениях (10), (11) использованы 4 массы, т.е. количество масс больше, чем параметров. Поэтому оказывается возможным определить d_{1n} из масс ядер с $\Delta A = 1$; 3.

$$d_{1n} (\Delta A = 1) = o(1,0)/2; d_{1n} (\Delta A = 3) = o(3,0)/6.$$
(12)

Для Б: $s = \pm 1, \pm 3; t = \pm 2, \pm 4; \Delta A = |s + t| = 1, 3.$

$$\mathcal{M}(N_n, Z) = \frac{5}{8}e(1, -2) + \frac{5}{48}e(1, 2) - \frac{1}{6}e(1, -4) - \frac{1}{16}e(3, -2);$$
(13)

$$d_{2n}(N_{\rm H},Z) = [e(1,2) + e(3,-2) - 2e(1,-2)]/8; \quad (14)$$

Число использованных масс равно 8, число параметров — 6, поэтому существует 2 варианта для получения d_{1n}

$$d_{1n}(\Delta A = 1) = [o(3, -2) - o(1, -2)]/4;$$
(15)

$$d_{1n}(\Delta A = 3) = [o(1, -4) + 2o(1, 2)]/6.$$
(16)

Для Б приводятся уравнения только для нейтронных параметров, т.к. их можно сравнивать с параметрами, полученными в А.

ЧИСЛЕННЫЕ ЗНАЧЕНИЯ ПАРАМЕТРОВ МАССОВОЙ ПОВЕРХНОСТИ НЕЧЕТНЫХ ДЕФОРМИРОВАННЫХ ЯДЕР И ОБСУЖДЕНИЕ РАЗЛИЧНЫХ ПРИБЛИЖЕНИЙ ДЛЯ ИХ ОПРЕДЕЛЕНИЯ

Как указывалось во введении, все параметры \mathcal{M} и d_{inkp} могут быть вычислены либо через массы четно-четных ядер, $\mathcal{M}(N + s, Z + t)$, либо через их энергии E(N + s, Z + t), т.е. через энергии связи, B = -E. Ниже в табл. 1, 2 содержатся значения параметров, вычисленные с уравнениях (6)–(16) на основе последней публикации M. Вонга и др. [8]. Параметры приводятся для стабильных ядер $^{157}_{64}$ Gd, $^{165}_{67}$ Ho, $^{171}_{70}$ Yb, $^{175}_{71}$ Lu и $^{179}_{72}$ Hf, т.к. для стабильных ядер в их ближайшей окрестности имеется достаточное количество измеренных масс ядер. В табл. 1 указаны массовое число A. заряд Z, $\tau = n$ для нечетно-нейтронных и $\tau = p$ для нечетно-протонных ядер. Эмпирические погрешности указаны в скобках рядом с параметрами. Все значения приведены в кэВ.

Табл. 1 показывает, что $\overline{d}_{1\tau}$, найденные как в разных приближениях, так и при разных ΔA внутри приближения, максимально отличаются на ~200 кэВ, т.е. относительное различие, отнесенное к $\overline{d}_{1\tau}$, составляет очень небольшую величину ~3%. Напомним, что в А удерживается неизменное Z для нечетно-нейтронных ядер и неизменное N для нечетно-протонных, а в Б, соответственно, Z или N изменяются на четные числа (± 2 , ± 4). Знак и величина $\overline{d}_{1\tau}$ примерно соответствуют оценке на основе формулы Вайцзеккера [4].

Отметим, что параметры в Б по сравнению с А имеют большие эмпирические погрешности. Это связано с тем, что в Б используется большее число масс ядер, что обусловливает это различие.

Как следует из табл. 1, четные параметры $d_{2\tau}$ оказываются ближе друг к другу, чем $d_{1\tau}$, определенные в разных приближениях. Различие параметров $d_{2\tau}$ в А и Б в среднем равно ≈ 22 кэВ. Обращает на себя внимание существенная разница в

A	Ζ	τ	$P_{\tau}(A)$	$\mathcal{M}(A) - \mathcal{M}(F)$
157	64	п	887.2(1.4)	-19(11)
165	67	р	862.5(1.3)	-102(25)
171	70	п	796.16(0.07)	-82(28)
175	71	р	894.2(1.8)	-174(22)
179	72	п	743.6(2.0)	328(63)

Таблица 2. Парные энергии P_{τ} в приближении A и разности "гладких" масс нечетных ядер $\mathcal{M}(A) - \mathcal{M}(B)$ в кэВ. Приближения A и B - cm. текст

 d_{2n} и d_{2p} . Однако формула Вайцзеккера как раз объясняет это. Если приближенно принять $d_{2n} \approx -\partial^2 B / \partial N^2$ и $d_{2p} \approx -\partial^2 B / \partial Z^2$, где B – энергия связи Вайцзеккера с параметрами из [4], то $d_{2n} \sim 200$ кэВ и $d_{2n} - d_{2p} \sim 400$ кэВ для 150 < A < 190, что вполне разумно согласуется с данными табл. 1.

Парные энергии P_{τ} (табл. 2) приводятся только в А, P_{τ} в Б могут быть получены с помощью разности $\mathcal{M}(A) - \mathcal{M}(B)$, т. к., например, $P_n(A) = \mathcal{M}(N_{\rm H}, Z) - \mathcal{M}(A)$. Абсолютные значения \mathcal{M} не приводятся, т. к. они имеют тот же порядок, что и массы соседних четно-четных ядер, и могут быть легко восстановлены, используя значения P_{τ} и массу соответствующего нечетного ядра (см. (1) и (2)).

Подводя итог исследованию массовой поверхности вокруг нечетных ядер, аппроксимированной полиномами второго порядка по отклонениям от N и Z нечетного ядра, мы не можем отдать предпочтения A (постоянные Z(N) для нечетнонейтронных (нечетно-протонных) ядер) или Б, где Z(N) изменяются. Оба эти приближения используют аппроксимацию массовой поверхности в виде полинома второго порядка. А использует для гладкой составляющей массы нечетного ядра \mathcal{M} четыре массы, Б – восемь, что не всегда возможно, но оба приближения используют массы четно-четных ядер, отличающиеся от нечетного ядра на $\Delta A = 1$; 3. По-видимому, микроскопический анализ может показать, какое приближение более адекватно.

СПИСОК ЛИТЕРАТУРЫ

- Nilsson S.G, Tsang C.F., Sobiczewski A. et al. // Nucl. Phys. A. 1969. V. 131. P. 1.
- 2. Соловьев В.Г. Теория сложных ядер. М.: Наука, 1971. 560 с.
- Bender M., Heenen P.-H., Reinhard P.-G. // Rev. Mod. Phys. 2003. V. 75. P. 121.
- Бор О., Моттельсон Б.Р. Структура атомного ядра. Т. 1. М.: Мир, 1971. 456 с.
- Власников А.К., Зиппа А.И., Михайлов В.М. // Изв. РАН. Сер. физ. 2016. Т. 80. С. 989; Vlasnikov А.К., Zippa A.I., Mikhajlov V.M. // Bull. Russ. Acad. Sci. Phys. 2016. V. 80. P. 905.
- Madland D.G., Nix J.R. // Nucl. Phys. A. 1988. V. 476. P. 1.
- Власников А.К., Зиппа А.И., Михайлов В.М. // Изв. РАН. Сер. физ. 2017. Т. 81. С. 1325; Vlasnikov А.К., Zippa A.I., Mikhajlov V.M. // Bull. Russ. Acad. Sci. Phys. 2017. V. 81. P. 1184.
- Wang M., Audi G., Kondev F.G. et al. // Chin. Phys. C. 2017. V. 41. № 3. Art. № 030003.