УДК 539.163

ИССЛЕДОВАНИЕ АКТИВАЦИИ ¹⁷⁷Lu В (у, *pxn*)-РЕАКЦИЯХ

© 2020 г. В. А. Желтоножский¹, М. В. Желтоножская^{1, *}, А. В. Саврасов², С. С. Белышев¹, А. П. Черняев¹, В. Н. Яценко³

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия

²Институт ядерных исследований НАН Украины, Киев, Украина

³Федеральное государственное бюджетное учреждение

"Государственный научный центр Российской Федерации — Федеральный медицинский биофизический центр имени А.И. Бурназяна" Федерального медико-биологического агентства России, Москва, Россия

> **E-mail: zhelton@yandex.ru* Поступила в редакцию 02.03.2020 г. После доработки 15.04.2020 г. Принята к публикации 27.04.2020 г.

В (*γ*, *pxn*)-реакциях впервые измерены взвешенные по спектру интегралы сечения и средневзвешенные сечения для ¹⁷⁷Lu при граничных значениях энергии тормозных *γ*-квантов 17.5, 20, 37 и 55 МэВ. Результаты моделирования с использованием программных кодов TALYS-1.9 и EMPIRE-3.2 демонстрируют доминирование нестатистических процессов.

DOI: 10.31857/S0367676520080347

ВВЕДЕНИЕ

Исследование взаимодействия фотонов с атомными ядрами продолжается уже несколько десятков лет, несмотря на это, пока наиболее изучены сечения (γ , n)- и (γ , γ')-реакций [1, 2], а реакция с вылетом протона исследована значительно хуже. Основной причиной этого является то, что ее сечение значительно ниже по сравнению с (γ , n)-каналом вследствие кулоновского барьера. В тоже время в (γ , p)-реакциях могут возбуждаться состояния, часто недоступные для (γ , n)-канала. Также для фотоядерных реакций с вылетом протонов ожидается значительный вклад прямых и полупрямых процессов. Вклад этих процессов для тяжелых ядер на порядки превышает вклад процессов, идущих через составное ядро.

Экспериментальные данные о фотоядерных реакциях для ядер с Z > 50 очень малочисленны, поэтому получение новых экспериментальных данных о фотоядерных реакциях на различных мишенях с Z = 72 (гафний) в широком диапазоне энергий тормозных γ -квантов имеют важное фундаментальное значение.

В то же время данные о сечениях реакций с вылетом протона на природном гафнии и его изотопах имеют и большое прикладное значение. Методика лечения опухолей костных тканей и внутренних органов радиофармацевтическими препаратами на основе радионуклида ¹⁷⁷Lu является одной из новейших разработок в области ядерной медицины. Низкая энергия β -излучения ($E^{max} = 0.497 \text{ M} \Rightarrow B$) обеспечивает небольшую проникающую способность и соответственно локальность терапии. В связи с этим ¹⁷⁷Lu представляет менее токсичную альтернативу радионуклида ⁹⁰Y, что отражается в меньшей дозовой нагрузке на пациента и возможности повторения циклов терапии. Эти свойства в сочетании с периодом полураспада 6.71 сут. позволяют достигать хорошего паллиативного и радиотерапевтического эффекта при относительно низкой миелотоксичности [3]. В настоящее время изотоп ¹⁷⁷Lu производят, в основном, методом облучения нейтронами мишеней из высокообогащенного ¹⁷⁶Lu, при этом обогащение по ¹⁷⁶Lu из природной смеси изотопов должно быть не менее 82%. Получение ¹⁷⁷Lu в реакции ¹⁷⁶Lu(n, γ)¹⁷⁷Lu приводит к наличию химически неотделимых примесей редкоземельных элементов как стабильного исходного ¹⁷⁶Lu, так и долгоживущего ¹⁷⁷mLu, что ухудшает радиохимическую чистоту получаемого радиофармпрепарата. Этих неотделимых примесей можно избежать, используя реакцию ¹⁷⁶Yb (n, γ) ¹⁷⁷Yb, далее ¹⁷⁷Yb с $T_{1/2} = 1.9$ ч превращается в ¹⁷⁷Lu. В таком случае необходима процедура отделения Lu от Yb, что связано с определенными методическими трудностями [4]. Поэтому исследование альтернативных каналов получения этого перспективного медицинского изотопа является важной и актуальной задачей.

Рис. 1. Фрагменты γ -спектра мишени естественного Hf облученной тормозными γ -квантами с $E^{max} = 17.5$ МэВ (*a*), $E^{max} = 37$ МэВ (*b*) и $E^{max} = 55$ МэВ (*b*).

МЕТОДЫ ЭКСПЕРИМЕНТА

Эксперименты проводились с использованием гамма-активационных методов. Была проведена серия облучений мишеней металлического и порошкообразного гафния, как природного изотопного состава, так и обогащенного порошкообразного гафния по ¹⁷⁹Нf и ¹⁸⁰Hf на линейных ускорителях электронов и микротронах. Облучение мишеней проводилось на тормозных γ -пучках для электронов с энергией E^{max} 17.5, 20, 37 и 55 МэВ. Продолжительность облучения образцов в разных экспериментах составляла от 40 мин до 8 ч.

При облучении $E^{max} = 17.5$ МэВ мишень представляла собой порошок ^{nat}HfO₂, весом 8.85 г, засыпанная в алюминиевую цилиндрическую емкость высотой 8 мм и диаметром 2 см. При E^{max} = 20 и 37 МэВ мишени состояли из прямоугольных полос металлического гафния размерами $3 \times 4 \times 3.5$ мм, весом около 540 мг и $3 \times 6 \times 2.4$ мм и весом около 570 мг, соответственно. При $E^{max} = 55$ МэВ облучались, как мишень гафния естественного изотопного состава в виде прямоугольной полосы размером $4 \times 5 \times 0.7$ мм и весом около 180 мг, так и обогащенные мишени, которые представляли собой порошки ¹⁷⁹НfO₂ (¹⁷⁹Нf - 73.7%) и ¹⁸⁰НfO₂ (¹⁸⁰Hf - 94.3%), засыпанные в полиэтиленовые пакеты размерами 0.8 × 0.9 × 0.3 см, вес 350 мг и $1 \times 1 \times 0.3$ см вес 390 мг, соответственно. Для оценки потока тормозных γ -квантов при $E^{max} = 55 \text{ M} \Rightarrow \text{B}$ и $E^{max} = 20 \text{ M} \Rightarrow \text{B}$, использовалась хорошо изученная ядерная реакция 181 Ta(γ , n) 180 Ta [5]: вместе з гафнием располагались мишени металлического естественного тантала размером $2 \times 2 \times 0.01$ см, весом 0.656 г и 1 × 1 × 0.043 см, весом 0.7 г, соответственно. При $E^{max} = 17.5 \text{ МэВ}$ для оценки потока тормозных у-квантов использовалась реакция 176 Hf(γ , *n*) 175 Hf, хорошо изученная в этом энергетическом диапазоне [6], а при $E^{max} = 37 \text{ МэВ}$ для оценки потока использовались реакции 175 Lu(γ , *n*) 174 Lu и 175 Lu(γ , 2*n*) 173 Lu, также хорошо изученные в исследуемом энергетическом диапазоне [7].

Спектры гамма-лучей облученных мишеней измерялись на гамма-спектрометрах, собранных на базе сверхчистых полупроводниковых детекторов фирм Canberra и Ortec с эффективностью регистрации 15–40% по сравнению с NaI(Tl)-детектором размерами 3' × 3". Энергетическое разрешение спектрометров составило 1.2 кэВ на γ -линии 343 кэВ ¹⁷⁵Hf и 1.8–2.0 кэВ на γ -линиях 1173, 1332 кэВ ⁶⁰Со.

Регистрация активности ¹⁷⁷Lu проводилась по γ-линии 208 кэВ. Фрагменты измеренных γ-спектров приведены на рис. 1, 2. Обработка γ-спектров проводилась с помощью программы Winspectrum [8]. Эффективность регистрации γ-квантов распада была определена с помощью стандартных калибровочных источников ^{152, 154}Eu и ¹³³Ba.

Для определения взвешенных по спектру интегралов сечений ($Y^{инт}$) реакций необходимо знать потоки тормозных ү-квантов на мишенях. Для их получения при $E^{max} = 17.5$ МэВ определялись площади фотопиков ү-линии 343.4 кэВ, которая соответствует распаду ¹⁷⁵Нf (см. рис. 1) и взвешенный по спектру интеграл сечения реакции ¹⁷⁶Hf(γ , n)¹⁷⁵Hf. При $E^{max} = 55$ МэВ и $E^{max} = 20$ МэВ определялись интенсивности ү-линий 93.3 и 103.6 кэВ, сопровождающие распад ¹⁸⁰Та и взвешенный по спектру интеграл сечения реакции ¹⁸¹Та(γ , n)¹⁸⁰Та. При $E^{max} = 37$ МэВ определение потока проводилось с помощью измерения активности ¹⁷⁴Lu ($T_{1/2} = 3.31$ г., γ 76.5 кэВ), ¹⁷³Lu ($T_{1/2} = 1.37$ г., γ 272 кэВ) и данных об взвешенных по спектру интегралах сечений реакций ¹⁷⁵Lu(γ , n)¹⁷⁴Lu и ¹⁷⁵Lu(γ , 2n)¹⁷³Lu.

Взвешенные по спектру интегралы сечений реакций на мониторных мишенях $^{175}Lu(\gamma, n)^{174}Lu$, $^{175}Lu(\gamma, 2n)^{173}Lu$, $^{176}Hf(\gamma, n)^{175}Hf$ и $^{181}Ta(\gamma, n)^{180}Ta$

Puc. 2. Φрагменты γ-спектра мишени ¹⁷⁹Hf облученной тормозными γ-квантами с $E^{max} = 20$ M₃B (*a*) и $E^{max} = 55$ M₃B (*b*).

Рис. 3. Смоделированный спектр тормозных γ -квантов для величин энергии электронов: 1 - 17.5, 2 - 20, 3 - 55 МэВ (a), смоделированный спектр тормозных γ -квантов при $E^{max} = 37$ МэВ из [11] (δ).

определялись в результате свертки табличных значений сечения этих реакций для монохроматических γ -квантов с шагом 1 МэВ с относительными величинами моделированного в Geant4 [9] спектра тормозных γ -квантов (см. рис. 3) по формуле, бн · МэВ:

$$Y^{^{\text{инт}}} = \sum_{i=1}^{N} \sigma_i \varphi_i, \qquad (1)$$

где σ_i — табличные значения сечений реакций на мониторных мишенях для монохроматических γ квантов [5–7]; ϕ_i — относительные величины потока, моделированного в Geant4 [9] спектра тормозных γ -квантов, приведенные к пороговым величинам реакций на мониторных мишенях. При облучении геометрия мишеней учитывается в самом программном коде Geant4, т.е. учитывается ослабления потока для низкоэнергетических тормозных гамма-квантов. В нашем случае этими поправками можно пренебречь, вследствие высоких пороговых энергий тормозных гамма-квантов для исследуемых реакций.

После этого рассчитывались потоки тормозных γ -квантов по формуле, $n_{\gamma} \cdot (cm^{-2} \cdot c^{-1} \cdot M \ni B^{-1})$:

$$F = \frac{S\lambda A}{(1 - e^{-\lambda t_{\text{obs}}}) e^{-\lambda t_{\text{oxs}}} (1 - e^{-\lambda t_{\text{HSM}}}) \xi k \eta Y^{\text{инт}} N_A m p}, \quad (2)$$

где *S* — площади фотопиков, соответствующих распадам ¹⁸⁰Ta, ¹⁷⁵Hf, ^{174g,173}Lu; η — квантовые выходы γ -квантов при распаде ¹⁸⁰Ta, ¹⁷⁵Hf, ^{174,173}Lu; ξ — эффективности регистрации γ -квантов, сопровождающих распад ядер продуктов реакций

Реакция	Энергия Е ^{тах} , МэВ	<i>Ү</i> ^{инт} , мкб · МэВ			$\langle \sigma angle$, мкб
		Эксперимент	TALYS	EMPIRE	Эксп.
$^{178}\mathrm{Hf}(\gamma,p)^{177}\mathrm{Lu}$	17.5	2480 ± 250	3.5	2.6	590 ± 60
	20	5760 ± 800	6.5	8.2	1360 ± 190
^{nat} Hf(γ , <i>pxn</i>) ¹⁷⁷ Lu	37	4470 ± 700	374	_	450 ± 70
	55	2200 ± 400	480	_	200 ± 30
$^{179}{ m Hf}(\gamma, pn)^{177}{ m Lu}$	55	1320 ± 150	866	_	120 ± 20
180 Hf(γ , <i>p</i> 2 <i>n</i>) 177 Lu		20 ± 5	0.7	0.24	1.7 ± 0.5

Таблица 1. Экспериментальные взвешенные по спектру интегралы сечений ($Y^{инт}$) и средневзвешенные ($\langle \sigma \rangle$) сечения получения ¹⁷⁷Lu

на мониторных мишенях; *t*_{обл}, *t*_{охл}, *t*_{изм} – времена облучения, охлаждения и измерения, соответственно (с): k – коэффициенты самопоглошения у-квантов распада. Они рассчитываются после моделирования реальных облучаемых мишеней в программном коде МСПР [10]. Рассчитывается эффективность регистрации нужных у-линий для точечной ($\epsilon_{\rm T}$) и реальной ($\epsilon_{\rm p}$) мишеней и вводится поправка на самопоглощение $k = \varepsilon_{\rm p}/\varepsilon_{\rm r}$. При этом эффективность регистрации для точечной мишени совпадает с экспериментальной, полученной с помощью калибровочных точечных источников; p — абсолютное содержание ¹⁸¹Ta, ¹⁷⁶Hf, ¹⁷⁵Lu в естественной смеси; $N_A = 6.02 \times 10^{23}$ — число Авогадро (количество ядер · r^{-1} · моль⁻¹); $Y^{^{инт}}$ – взвешенные по спектру интегралы сечений ре- 181 Ta $(\gamma, n)^{\overline{180}}$ Ta, $^{\overline{175}}$ Lu $(\gamma, n)^{174g}$ Lu, акций

 175 Lu(γ , 2n)¹⁷³Lu и 176 Hf(γ , n)¹⁷⁵Hf рассчитанные согласно (1) (мбн · МэВ); m – массы мишеней тантала, лютеция и гафния на единицу площади ($\Gamma \cdot cm^{-2}$); A = 181, 176, 175 – массовые числа атомов тантала, гафния и лютеция (а. о. м.); λ – постоянные распада 180 Ta, 175 Hf, 174 Lu и 174 Lu (c⁻¹).

Величины λ , α , A, p берутся из [11]; S – из экспериментальных γ -спектров, а ξ – из калибровочных кривых, дополнительно проверенных с помощью моделирования с использованием программного кода Geant4.

Далее по формуле (2), используя эти данные и поправки на разницу энергетических порогов и кулоновских барьеров исследуемых реакций и реакций на мониторах рассчитывались $Y^{\mu_{HT}}$ реакций ¹⁷⁸Hf(γ , p)¹⁷⁷Lu при $E^{max} = 17.5$ и 20 МэВ, ^{*nat*}Hf(γ , *pxn*)¹⁷⁷Lu при $E^{max} = 37$ МэВ и ^{*nat*}Hf(γ , *pxn*)¹⁷⁷Lu, ¹⁷⁹Hf(γ , *pn*)¹⁷⁷Lu и ¹⁸⁰Hf(γ , *p2n*)¹⁷⁷Lu при $E^{max} =$ = 55 МэВ. Результаты приведены в табл. 1.

В последнем столбце таблицы приведены экспериментальные средневзвешенные сечения наработки ¹⁷⁷Lu, которые рассчитывались также согласно форм. (2), в которой поток тормозных γ-квантов *F* был заменен на интегральный поток. Он, в свою очередь, был получен для средневзвешенных сечений $\langle \sigma^{mon} \rangle$ реакций на мониторах, рассчитанных по формуле (2) [12]:

$$\left\langle \sigma^{mon} \right\rangle = \frac{\sum_{i=1}^{N} \sigma_i \varphi_i}{\sum_{i=1}^{N} \varphi}.$$
 (3)

Обозначение физических величин в формуле (3) аналогично формуле (1). В работе [12] приведено детальное описание этой методики.

Экспериментальные величины взвешенных по спектру интегралов сечения и средневзвешенные сечения для ^{nat}Hf рассчитывались с учетом того, что 76% атомов разных изотопов гафния могут приводить к образованию ¹⁷⁷Lu при $E^{max} = 55$ и 37 МэВ и лишь ¹⁷⁸Hf (27%) при $E^{max} = 17.5$ и 20 МэВ.

Статистическая погрешность в наших измерениях составила менее 5%. В то же время моделирование спектра тормозных γ -квантов достаточно сложная задача, т. к. при облучении использовались разные по размерам и массам сборки. Наша оценка погрешности за счет формы тормозного γ -спектра составила около 10%. Для оценки систематической погрешности измерения проводились на разных спектрометрах, в таблице указана общая погрешность.

ОБСУЖДЕНИЕ ПОЛУЧЕННЫХ РЕЗУЛЬТАТОВ

Для оценки механизмов протекания исследуемых ядерных реакций нами проведено моделирование этих процессов с использованием программных кодов TALYS-1.9 и EMPIRE-3.2. Более детально о моделировании с помощью этих кодов изложено в [13, 14], в них учитываются доминирующие статистические и предравновесные процессы.

Рис. 4. Зависимость относительной вероятности испускания протонов от Z [15, 16] сплошная кривая — статистический канал возбуждения, штриховая кривая — прямой канал возбуждения.

При теоретических расчетах определяются сечения для каждого изотопа отдельно с шагом 1 МэВ для монохроматических γ -квантов и далее с учетом содержания этого изотопа определяется сечение для ^{*nat*}Hf, а потом по (1) и (3) рассчитываются взвешенные по спектру интегралы сечений и средневзвешенные сечения, соответственно.

Результаты наших расчетов приведены в табл. 1. Как видно вклад этих процессов в (γ , p)-реакцию в области максимальной энергии 20 МэВ не превышает 0.2-0.3%. Отметим, что вклад (у, рл)-реакции при $E^{max} = 20 \text{ МэВ}$ нами не обнаружен (см. рис. 2a), т.е. активность ¹⁷⁷Lu при такой энергии тормозных у-квантов обусловлена только реакцией (ү, р). Это полностью совпадает с оценками вклада статистического канала в (γ , p)-реакции, выполненными в работах [15, 16] для тормозных γ -квантов с $E^{max} = 23$ МэВ. На рис. 4 приведены статистические (сплошная линия) и прямые (штриховая линия) расчеты. Из этих соотношений мы можем оценить, что в этой области Z вероятность прямых реакций на порядок больше, чем статистические процессы, из этих данных было оценено, что $Y^{инт} \approx 3$ мбн · МэВ для прямого канала (ү, *p*)-реакции. Это согласуется с нашими значениями в этой области энергии. Поэтому можно сделать вывод о доминировании прямого канала в (ү, р)-реакции в области максимума гигантского дипольного резонанса. Совсем иная ситуации в более высокой области энергий. Из данных о вкладе (γ , *pn*)-канала при $E^{max} = 55 \text{ M} \cdot \text{B}$ можно оценить, что выходы (γ , *p*)-реакции при 37

и 55 МэВ составляют 14 мб · МэВ и 12 мб · МэВ, соответственно. Они получены при замене в (2) p = 0.76 на p = 0.273 (абсолютное содержание ¹⁷⁸Hf в естественной смеси) с учетом формы тормозно-го спектра и вычета вкладов (γ , pn) и (γ , p2n)-каналов. В этом случае вклад статистических и предравновесных каналов увеличивается и достигает для (γ , pn)-реакции 50% (см. табл. 1). На наш взгляд это указывает на больший вклад высокоспиновых состояний в этой области энергий, т. к. прямые реакции, как правило, приводят к возбуждению низкоспиновых состояний.

Из наших данных следует, что в естественной смеси вклад (ү, *p*)-реакции больше в (1.5–2) раза чем вклад (ү, рп)-реакции. Некоторое расхождение этих данных с оценками работы [17]. на наш взгляд, связано с тем, что в [17] оценки делались на основе расчетов в коде Talys, в котором не учитывается вклад прямого канала. Отметим, что и наши расчеты, проведенные с помощью кода Talys-1.9, также дают заниженные оценки по сравнению с экспериментом (см. таблицу). Наши данные о наработке ¹⁷⁷Lu при $E^{max} = 20 \text{ M} \Rightarrow \text{B}$ указывают на то, что прямые реакции увеличивают взвешенные по спектру интегралы сечения при $E^{max} = 55 \text{ МэВ}$ как минимум в 2 раза и учет этого вклада позволяет приблизить расчетные значения сечений к экспериментальным данным. В работе [18] получен выход реакции nat Hf(γ , pxn) 177 Lu, равный 610 \pm 60 мкбн при $E^{max} = 40$ МэВ, а наше средневзвешенное сечение (выход) этой реакции 450 ± 70 мкбн при $E^{max} = 37$ МэВ. С учетом увеличения вклада (γ , *pn*)-канала при увеличении E^{max} , на наш взгляд, совпадение хорошее. Нами проводились также измерения долгоживущего изомера ¹⁷⁷*m*Lu, и были получены оценки, что вклад активности ¹⁷⁷mLu не превышает 0.01% при облучении мишеней на протяжении 7-10 дней. Эта оценка не противоречит оценке вклада ¹⁷⁷*m*Lu, полученной в [17].

Как уже обсуждалось во введении, данные об активации ¹⁷⁷Lu представляет большой практический интерес для исследования альтернативных каналов получения ¹⁷⁷Lu для производства радиофармпрепаратов. Нами рассчитана активация ¹⁷⁷Lu при облучении мишеней из природного гафния тормозными гамма-квантами с максимальной энергией 37 и 55 МэВ. Выход ¹⁷⁷Lu оказался равным 7.6 · 10⁴ и 16 · 10⁴ Бк · г⁻¹ · мкА⁻¹ при облучении мишеней в течении одного часа. В работе [17] отмечается, что при облучении мишени весом 10 г из естественного Hf током 0.1 мА в течении 10 суток нарабатывается несколько сотен мКи активности ¹⁷⁷Lu. Из наших данных получено, что при подобных условиях облучения нарабатывается 650 мКи активности ¹⁷⁷Lu. В настоящее время в ядерной медицине используются источники ¹⁷⁷Lu активностью около 27 мКи. Приведенные величины показывают перспективность использования микротронов и линейных ускорителей для производства ¹⁷⁷Lu, особенно при использовании обогащенных мишеней гафния.

ЗАКЛЮЧЕНИЕ

Впервые измерены интегральные и средневзвешенные сечения(выходы) ядерных реакций ¹⁷⁸Hf(γ , p)¹⁷⁷Lu при $E^{max} = 17.5$ и 20 МэВ, ^{*nat*}Hf(γ , pxn)¹⁷⁷Lu при $E^{max} = 37$ МэВ и ^{nat}Hf(γ , pxn)¹⁷⁷Lu, ¹⁷⁹Hf(γ , pn)¹⁷⁷Lu, ¹⁸⁰Hf(γ , p2n)¹⁷⁷Lu при $E^{max} = 55$ МэВ.

Результаты моделирования в рамках программных кодов TALYS-1.9 и EMPIRE-3.2 демонстрируют доминирование нестатистических процессов в (γ , p)-реакции, однако с ростом энергии тормозных γ -квантов вклад статистических и предравновесных процессов увеличивается на 1— 2 порядка и начинает вносить значительный вклад в сечение (γ , p)-реакции.

СПИСОК ЛИТЕРАТУРЫ

- 1. Гангрский Ю.П., Мазур В.М. // ЭЧАЯ. 2002. Т. 33. № 3. С. 158.
- Ditrich S., Berman B. // Atom. Data Nucl. Data Tabl. 1988. V. 38 № 2. P. 199.
- 3. *De Jong M., Breeman W.A., Valkema R. et al.* // J. Nucl. Med. 2005. V. 46. № 1. Art. № 13S.

- 4. *Dash A., Pillai M.R., Knapp F.F. Jr.* // Nucl. Med. Mol. Imaging. 2015. V. 49. № 2. P. 85.
- Варламов В.В., Ишханов Б.С., Орлин В.Н. и др. // ЯФ. 2013. Т. 76. № 11. С. 1484; Varlamov V.V., Ishkhanov B.S., Orlin V.N. et al. // Phys. Atom. Nucl. 2013. V. 76. Р. 1403.
- Горячев А.М., Залесный Г.Н. // ЯФ. 1977. Т. 26. С. 465; Goryachev A.M., Zalesnyy G.N. // Sov. J. Nucl. Phys. 1977. V. 26. P. 246.
- 7. https://www.nds.iaea.org/exfor/servet/X4sMakeX4.
- 8. *Strilchuk N.V.* The WinSpectrum manual. Kiev, 2000. 128 p.
- Agostinelli S., Allison J.R., Amako K. et al. // Nucl. Instrum. Meth. A. 2003. V. 506. P. 250.
- Briesmeister J.F. MCNP—a general Monte Carlo n-Particle transport code. Los Alamos Nat. Lab. Rep. LA-12625-M, 1997. 989 p.
- 11. *Firestone R.B.* Table of isotopes. 8th ed. New York: Wiley Intersci., 1996.
- Naik H., Kim G.N., Kapote R. et al. // Eur. Phys. J. 2016. V. A52. Art. № 19513.
- 13. Koning J., Hilaire S., Duijvestijn M.C. // Proc. Int. Conf. Nucl. Data Sci. Techn. (Santa Fe, 2004). P. 1154.
- 14. *Herman M., Capote R., Carlson B.V. et al.* // Nucl. Data Sheets. 2007. V. 108. P. 2655.
- 15. Weinstock E.V., Halpern J. // Phys. Rev. 1954. V. 94. P. 1651.
- 16. Wilkinson D.H. // Phys. 1956. V. 22. P. 1039.
- Kazakov A.G., Belyshev S.S., Ekatova T.Y. et al. // J. Radioanal. Nucl. Chem. 2018. V. 317. P. 1469.
- 18. Danagulyan A.S., Hovhannisyan G.H., Bakhshiyan T.M. et al. // Phys. Atom. Nucl. 2015. V. 78. P. 447.