УДК 539.213.2:536.26:536.425

МАГНИТНЫЕ СВОЙСТВА СПИННИНГОВАННЫХ ЛЕНТ Fe—Cu—Nb—Si—B

© 2020 г. Д. В. Балацкий^{1, 2, *}, Г. С. Крайнова¹, В. С. Плотников¹, Н. В. Ильин¹, В. В. Ткачев¹, Ю. В. Князев³

¹Федеральное государственное автономное образовательное учреждение высшего образования "Дальневосточный федеральный университет", Владивосток, Россия

²Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук, Владивосток, Россия

³Институт физики имени Л.В. Киренского Сибирского отделения Российской академии наук — обособленное подразделение Федерального исследовательского центра "Красноярский научный центр Сибирского отделения Российской академии наук", Красноярск, Россия

*E-mail: denis.balatskiy@bk.ru Поступила в редакцию 19.03.2020 г. После доработки 10.04.2020 г. Принята к публикации 27.05.2020 г.

Измерены зависимости относительной намагниченности насыщения от температуры для аморфно-нанокристаллических лент типа "Finemet" состава $FeCu_1Nb_3Si_{13.5}B_8$, $FeCu_1Nb_3Si_{13}B_6$, $FeCu_1Nb_3Si_{13}B_{13}$, методом Мёссбауэровской спектроскопии установлен характер процессов структурной релаксации аморфных сплавов, а также определены основные магнитные характеристики. Обнаружено, что процессы структурной релаксации аморфной ленты при отжиге проходят в несколько этапов.

DOI: 10.31857/S0367676520090069

В настоящее время широко исследуются аморфно-нанокристаллические материалы с контролируемой долей упорядоченной фазы. Одним из важных свойств неупорядоченных систем является наличие магнитного порядка при отсутствии трансляционной симметрии на атомном уровне [1, 2]. Свойства аморфно-нанокристаллических систем отличаются от свойств как аморфных, так и кристаллических материалов [3]. В связи с этим неравновесные и неупорядоченные аморфные и равновесные аморфно-нанокристаллические структуры вызывают огромный интерес [4, 5].

В рамках данной работы были исследованы аморфно-нанокристаллические ленты типа "Finemet" с разным содержанием аморфизаторов состава $FeCu_1Nb_3Si_{13.5}B_8$, $FeCu_1Nb_3Si_{13}B_6$, $FeCu_1Nb_3Si_{13}B_{13}$, толщиной ~20 мкм, полученные методом спиннингованния (скорость охлаждения ~ $10^6~K/c$).

Анализ динамики магнитных свойств, структурная стабильность ленты и переход ее в кристаллическое состояние контролировались при нагреве от комнатной до 700°С (скорость нагрева 10 град/мин) с применением вибрационного магнитометра.

По данным зависимости относительной намагниченности насыщения от температуры [5, 6] бы-

ли определены основные магнитные характеристики образцов: температура Кюри аморфного состояния $T_{\rm c}^{\rm am}$, температура начала кристаллизации $T_{\rm kp}$, разность температур в состоянии с нулевым магнитным моментом $\Delta T_{\rm mm}$, температура максимального магнитного упорядочения в кристаллическом состоянии $T_{\rm kp}^{\it max}$, а также температура Кюри кристаллического состояния $T_{\rm c}^{\it kp}$, табл. 1.

Мёссбауэровские спектры были получены при комнатной температуре в геометрии пропускания с источником 57 Co(Rh). Калибровка шкалы скоростей производилась по спектру металлического железа (α -Fe), величины изомерного сдвига определялись относительно центра тяжести спектра α -Fe.

Привлечение метода Мёссбауэровской спектроскопии позволило получить информацию о распределении сверхтонких магнитных полей и ближайшем окружении атома ⁵⁷Fe, как для исходно аморфных, так и для отожженных в течение 30 минут при температурах 550°C и 650°C образцов, рис. 1—3. В исходном состоянии мессбауэровские спектры представляют собой спектры ферромагнетиков с широкими и перекрытыми линиями поглощения, которые соответствуют аморфным материалам. По мере повышения тем-

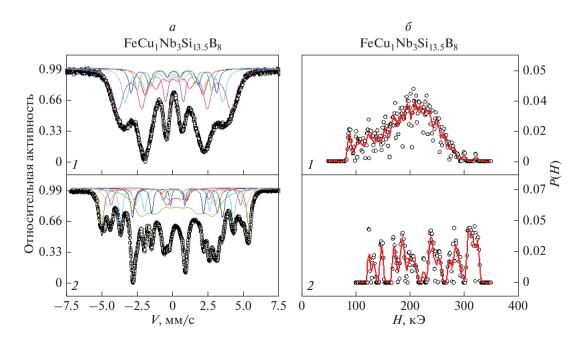
№	Состав образца	$T_{\rm c}^{\rm am}$, °C	$\Delta T_{\scriptscriptstyle \Pi M}$, °C	T _{κp} , °C	T_{Kp}^{max} , °C	$T_{\rm c}^{\rm \kappa p}, {}^{\circ}{ m C}$
1	FeCu ₁ Nb ₃ Si ₁₃ B ₆	375	175	550	625	675
2	FeCu ₁ Nb ₃ Si _{13,5} B ₈	350	200	550	600	650
3	FeCu ₁ Nb ₃ Si ₁₃ B ₁₃	400	200	600	625	675

Таблица 1. Характеристические температуры для лент $FeCu_1Nb_3Si_{13.5}B_8$, $FeCu_1Nb_3Si_{13}B_6$, $FeCu_1Nb_3Si_{13}B_{13}$

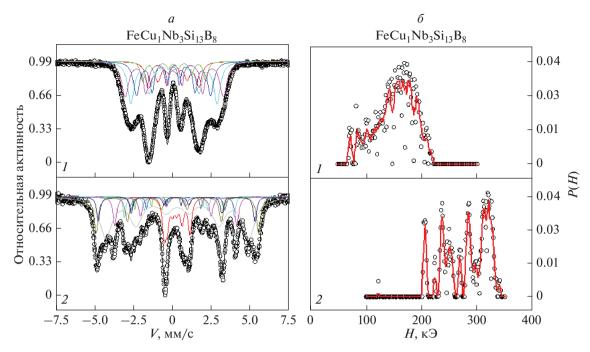
пературы начинаются процессы структурной релаксации, связанные с выходом свободного объема, снятием напряжения прокатки, сопровождающиеся появлением различных кристаллических фаз в образце, которые возможно определить, применяя метод мессбауэровской спектроскопии.

Обработка мёссбауэровских спектров проводилась в два этапа. На первом этапе было определено распределение сверхтонких полей в экспериментальных спектрах. Из распределения сверхтонких полей определялись величины наиболее вероятных полей в исследуемых образцах, которые затем вносились в программу для моделирования теоретического спектра, варьировались величины изомерного сдвига, квадрупольного расщепления, площади и ширины на полувысоте каждого подспектра (табл. 2).

В результате были обнаружены особенности, связанные с проявлением возможных неэквивалентных позиций железа, искажение его локального окружения. Рассчитанные значения маг-


нитных полей позволили определить возможные позиции и ближайшее окружение атомов 57 Fe находящихся в образцах (рис. 4).

Для аморфных материалов центральный атом железа может иметь n=14 ближайших соседей и (14n) атомов железа среди ближайшего окружения в представлении полиэдров Вороного в моделях случайно плотноупакованных структур (СПУ-структур) [1]. Вероятность нахождения таких атомных конфигураций в аморфной структуре описывается биномиальным распределением:


$$P_n = \frac{0.5}{1 - c} \binom{14}{n} (2c)^n (1 - 2c)^{14 - n},\tag{1}$$

где c — концентрация примесных атомов.

Вероятность нахождения атомных конфигураций в кристаллической структуре, т.е. для образцов, отожженных при температурах 550 и 650°C описывается другим биноминальным распределением ближайшего окружения в представлении

Рис. 1. Серия мёссбауэровских спектров (*a*) и распределение сверхтонких магнитных полей (*б*) в ленте $FeCu_1Nb_3Si_{13.5}B_8$. I-Aморфное состояние, <math>2- отожженный при температуре $650^{\circ}C$ образец.

Рис. 2. Серия мёссбауэровских спектров (*a*) и распределение сверхтонких магнитных полей (*б*) в ленте $FeCu_1Nb_3Si_{13}B_6$. 1- Аморфное состояние, 2- отожженный при температуре $650^{\circ}C$ образец.

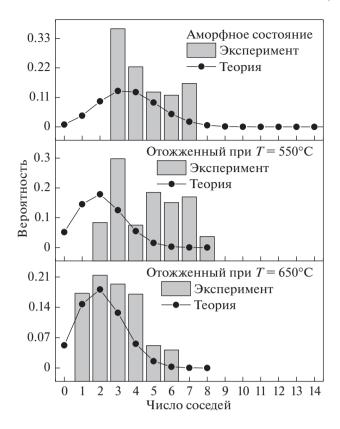
Рис. 3. Серия мёссбауэровских спектров (*a*) и распределение сверхтонких магнитных полей (*б*) в ленте $FeCu_1Nb_3Si_{13}B_{13}$. I-Aморфное состояние, <math>2- отожженный при температуре $650^{\circ}C$ образец.

 $D0_3$ решетки, в которой определяются позиции A и D, формула (2) [7].

$$P_n = \frac{0.5}{1 - c} \binom{8}{n} (2c)^n (1 - 2c)^{8 - n}.$$
 (2)

Распределение вероятностей ближайших соседей в представлении полиэдров Вороного в моделях СПУ-структур и распределение количества атомов примеси *п* в ближайшем окружении атома железа представлены на рис. 4.

Таблица 2. Параметры обработки мёссбауэровских спектров ленты $FeCu_1Nb_3Si_{13}B_{13}$. *IS* — изомерный сдвиг для α-Fe и источника ⁵⁷Co(Rh), ± 0.005 мм/с, H — сверхтонкое поле, ± 5 к Θ , QS — квадрупольное расщепление, ± 0.01 мм/с


	IS, mm/c	Н, кЭ	QS, mm/c	Относительная площадь, %	Число соседей	Фаза	
			И	сходный	1		
S 1	0.13	119.7	0.19	16.2	7		
S2	0.16	155.6	0.12	11.8	6		
S3	0.15	180.3	0.02	13.0	5		
S4	0.18	205.7	0	22.4	4		
S5	0.21	236.3	0	36.6	3		
			Отожже	нный при 550°C			
S1	0	113.4	1.40	4.0	A8	Fe-Si	
S2	0.22	132.3	0	17.0	A7		
S3	0.21	174.5	0.01	15.1	A6		
S4	0.33	199.5	0.08	18.4	A5		
S5	0.05	205.2	0	7.3	A4 A3 A2		
S6	0.27	245.2	0	29.8			
S7	0.18	310.6	0.02	8.4			
			Отожже	нный при 650°С			
S 1	0.41	59.2	3.24	16.7	Relax		
S2	0.14	198.4	0	4.1	A6		
S3	0.46	215.1	2.13	5.2	A5	.4 Fe–Si	
S4	0	232.8	0	16.8	A4		
S5	0.06	244.3	0.04	19.1	A3		
S6	0.07	297.9	0.31	21.1			
S 7	0	315.6	0	17.0			

Для аморфного состояния (рис. 4 и табл. 2) экспериментально обнаружены позиции железа с ближайшим окружением, состоящим от 3 до 7 немагнитных соседей. Для отожженного при температуре 550°С образца обнаружены позиции A2—A8 относящиеся к фазе Fe—Si, при температуре 650°С образца — позиции A1—A6. Также ближайшее окружение для образцов, отожженных при 650°С, согласуются с теоретической зависимостью, рассчитанной через биноминальное распределение. Данный факт можно объяснить тем, что температура 650°С является температурой, при которой в исследованных образцах прошли процес-

сы структурной релаксации вплоть до кристаллизации.

Из вышесказанного сделаны следующие выволы:

1. Термомагнитные исследования быстрозакаленных сплавов Fe—Cu—Nb—Si—B показали: увеличение процентного содержания металлоидов (Si, B) без изменения концентрации легирующих добавок (Cu, Nb) приводит к увеличению температуры магнитного фазового перехода в парамагнитное состояние, $T_{\rm c}^{\rm am}$, уменьшению интервала температур парамагнитного состояния, $\Delta T_{\rm пм}$, увеличению температуры кристаллизации, $T_{\rm kp}$.

Рис. 4. Распределение вероятностей ближайших соседей в представлении полиэдров Вороного в моделях СПУ-структур (кривая с точками). Распределение количества атомов примеси n в ближайшем окружении атома железа для ленты $FeCu_1Nb_3Si_{13}B_{13}$ (колонки).

2. Данные мёссбауэровской спектроскопии позволили получить распределение сверхтонких полей, наиболее вероятное значение которого для

аморфных быстрозакаленных сплавов с содержанием металлоидов более $20\% \sim 210~\mathrm{K}$ Э, $H_{\mathrm{cr}} \sim 210~\mathrm{K}$ Э для сплава $\mathrm{FeCu_1Nb_3Si_{13}B_6}$ и $H_{\mathrm{cr}} \sim 180~\mathrm{K}$ Э для сплава $\mathrm{FeCu_1Nb_3Si_{14}B_5}$. Приведенные значения сверхтонких полей соответствуют ближайшему окружению атома железа от 3 до 7 немагнитных соседей. Увеличение наивероятнейшего H_{cr} отображается в уменьшении числа немагнитных атомов от 1 до 5.

3. Отжиг до температур 550 и 650°С выявил сценарии структурной релаксации сплавов по изменению распределения сверхтонких полей и числа немагнитных атомов в ближайшем окружении. Увеличение дисперсии распределения $H_{\rm cr}$ и вероятностей ближайших соседей позволяет представить мессбауэровские спектры в виде суперпозиции 7—8 подспектров, что отображает сложный характер структуры быстрозакаленных сплавов на данном этапе структурной релаксации.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Хандрик К., Кобе С.* Аморфные ферро- и ферримагнетики. М.: Мир, 1982. 296 с.
- 2. *Судзуки К., Фудзимори Х., Хасимото К.* Аморфные сплавы. М.: Металлургия, 1987. 328 с.
- 3. *Глезер А.М.*, *Шурыгина Н.А*. Аморфно-нанокристаллические сплавы. М.: Физматлит, 2013. 450 с.
- 4. Chunling Q., Qingfeng H., Yongyan L. et al. // Mat. Sci. Eng. C. 2016. V. 69. P. 513.
- Tkachev V.V., Tsesarskaya A.K., Ilin. N.V. et al. // AIP Conf. Proc. 2017. V. 1874. Art. № 040051.
- 6. *Ильин Н.В., Ткачев В.В., Федорец А.Н. и др. //* Изв. РАН. Сер. физ. 2018. Т. 82. № 8. С. 951; *Ilin N.V., Tkachev V.V., Fedorets A.N. et al. //* Bull. Russ. Acad. Sci. Phys. 2018. V. 82. № 7. P. 860.
- Rixeckeret G., Schaaf P., Gonser U. // Phys. Stat. Sol. A. 1993. V. 139. P. 309.