УДК 621.315.592

ВЗАИМНАЯ ЗАВИСИМОСТЬ СВОЙСТВ ПРИМЕСНЫХ ИОНОВ Mn²⁺ И Gd³⁺ В УЗКОЗОННОМ ПОЛУПРОВОДНИКЕ Pb_{1 - x - y - z}Cu_xMn_yGd_zS: ИССЛЕДОВАНИЕ МЕТОДОМ СПЕКТРОСКОПИИ ЭЛЕКТРОННОГО ПАРАМАГНИТНОГО РЕЗОНАНСА

© 2021 г. В. А. Уланов^{1, 2, *}, Р. Р. Зайнуллин¹, И. В. Яцык², Т. А. Н. Хушея¹

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет", Казань, Россия

²Казанский физико-технический институт имени Е.К. Завойского — обособленное структурное подразделение

Федерального государственного бюджетного учреждения науки "Федеральный исследовательский центр "Казанский научный центр Российской академии наук", Казань, Россия

*E-mail: ulvlad@inbox.ru

Поступила в редакцию 05.07.2021 г. После доработки 26.07.2021 г. Принята к публикации 27.08.2021 г.

В образцах смешанного кристалла $Pb_{1-x-y-z}Cu_xMn_yGd_z$ ($x \approx 3 \cdot 10^{-3}$, $y \approx z \approx 1.5 \cdot 10^{-4}$) методом спектроскопии электронного парамагнитного резонанса обнаружены ярко выраженный магнеторезистивный эффект и необычные температурные зависимости формы спектральных линий парамагнитных центров Gd^{3+} и Mn^{2+} . Определены параметры спиновых гамильтонианов и формы спектральных линий исследуемых центров.

DOI: 10.31857/S036767652112036X

ВВЕДЕНИЕ

Исследуемый смешанный кристалл $Pb_{1-x-y-z}Cu_xMn_yGd_z$ синтезирован на основе кристалла галенита (PbS), относящегося к группе халькогенидов свинца ($A^{IV}B^{VI}$) [1]. Эта группа кристаллов имеет структуру каменной соли (NaCl) и характеризуется узкими запрещенными зонами $(E_g \approx 0.23 - 0.42 э B)$, высокой решеточной поляризуемостью, малой эффективной массой электронов и высокой их подвижностью. В их электронной структуре обычно присутствуют большое количество энергетических уровней собственных дефектов в запрещенной и в разрешенных зонах [2]. Кроме того, им характерны большая величина статической диэлектрической проницаемости и значительное различие между статической и высокочастотной диэлектрическими проницаемостями. Поскольку в рассматриваемом ряду кристаллов наблюдались признаки термодинамической неустойчивости [3, 4], существует возможность синтеза в их объемах новых наноскопических структур [5] путем их одновременного допирования несколькими видами примесей.

Несмотря на то, что халькогениды свинца долгое время были в центре внимания большого количества исследователей, интерес к ним не ослабевает и в настоящее время. Этот интерес связан с обнаружением новых возможностей использования халькогенидов свинца в качестве эффективных термоэлектрических преобразователей и материалов для создания новых приборов наноэлектроники и спинтроники [6]. В отличие от других кристаллов группы халькогенидов свинца, физические свойства галенита до сих пор остаются малоизученными. В то время как выполненные к данному моменту исследования позволяют в какой-то мере прогнозировать результаты допирования галенита примесными атомами одного вида (см., например, [2, 7]), они не дают возможности предсказать результаты его одновременного допирования несколькими примесями. В такой ситуации практически безнадежными оказываются попытки предсказания результатов двойного или тройного допирования галенита парамагнитными ионами различной природы.

Но кажется вероятным, что одновременное допирование такого узкозонного полупроводника с метастабильной кристаллической решеткой как галенит двумя различными парамагнитными примесями может привести к реализации новых кинетических процессов, связанных с обменными и анизотропными спин-орбитальными взаимодействиями [8]. Особый интерес вызывает случай, когда одной из допирующих компонент является парамагнитный ион из группы железа (например, Mn²⁺), а другой компонентой является редкоземельный ион (например, Gd³⁺).

В ланной работе в качестве объекта исследования был выбран смешанный кристалл $Pb_{1-x-y-z}Cu_{x}Mn_{y}Gd_{z}$, где медь является акцепторной примесью. Целью данной работы явился поиск новых эффектов, связанных с обменными и спин-орбитальными взаимодействиями и приводящих к взаимной зависимости физических свойств глубоких примесных центров Gd³⁺ и Mn²⁺, созданных в монокристаллическом сплаве $Pb_{1-x}Cu_xS$ в результате его дополнительного двойного допирования. Такой полупроводниковый материал интересен тем, что его физическими свойствами можно управлять путем изменения типа основных носителей заряда и их концентраций [9, 10]. Так как центры Gd³⁺ и Mn²⁺ являются парамагнитными, в качестве основного метода данного исследования был выбран метод спектроскопии электронного парамагнитного резонанса (ЭПР).

ЭКСПЕРИМЕНТ И ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Для выращивания исследуемых кристаллов был выбран вертикальный метод Бриджмена. Были использованы кварцевые тигли конической формы. Выращенные кристаллы соответствовали химической формуле $Pb_{1-x-y-z}Cu_xMn_yGd_z$: 1) $x \approx 3 \cdot 10^{-3}$, $y \approx z \approx 1.5 \cdot 10^{-4}$; 2) $x \approx 3 \cdot 10^{-3}$, y = 0, $z \approx 1.5 \cdot 10^{-4}$). Примесь меди вводилась в шихту в виде соединения Cu₂S, а примеси гадолиния и марганца в виде тонких порошков соответствующих металлов. Кроме того, в шихту вводилось некоторое количество серы, необходимое для обеспечения стехиометрии. Все компоненты шихты были химически чистыми. Приготовленная шихта загружалась в кварцевый тигель и отжигалась при $T = 250^{\circ}$ С в течение 3 ч в условиях откачки вакуумным насосом ($2.3 \cdot 10^{-4}$ мм рт. ст.). Затем тигель запаивался и помещался в ростовую камеру установки "Донец-2", где он перемещался вертикально вниз в тепловом поле с температурным градиентом 250 град/см. Скорость опускания тигля равнялась 1.2 см/ч.

Исследования были выполнены методом ЭПР на спектрометре ER200SRC (EMX/plus, Bruker) с контроллером температуры ITC503S (Oxford instruments) в X-диапазоне. Монокристаллические образцы вырезались из полученной кристаллической були скальпелем и имели форму прямоугольного параллелепипеда с приблизительными размерами $3.5 \times 3.5 \times 2 \text{ мм}^3$. Поверхности образцов оказывались плоскими и блестящими и совпадали с кристаллографическими плоскостями (001). Приготовленные образцы укреплялись на вертикальном кварцевом держателе так, чтобы повороты держателя вокруг оси позволяли устанавливать образец в резонаторе спектрометра в трех главных направлениях, $\vec{H}_0 \parallel \langle 001 \rangle$, $\vec{H}_0 \parallel \langle 111 \rangle$, $\vec{H}_0 \parallel \langle 110 \rangle$.

Спектры ЭПР образца кристалла Рb_{1-x-y-z}Cu_xMn_yGd_z (x ≈ 3 · 10⁻³, y ≈ z ≈ 1.5 · 10⁻⁴, образец № 1), зарегистрированные в ориентации $\vec{H}_0 \parallel \langle 001 \rangle$ при микроволновой мощности в резонаторе P = 2 мВт, показаны на рис. 1 и 2. На рис. 1 показаны спектры, зарегистрированные при температурах 5 (верхний график) и 50 К (нижний график). Здесь во вставках показаны участки графиков с наложенными друг на друга спектрами исследуемых центров Gd³⁺ и Mn²⁺. Здесь же, для определения принадлежности наблюдаемых линий ЭПР, помещены диаграммы с положениями относительными интенсивностями линий и спектров исследуемых центров. На низкополевом участке спектра ЭПР, зарегистрированного при T = 5 K (рис. 1*a*), видна узкая колоколообразная линия, возникающая из-за наличия в объеме исследуемого образца микроскопических включений металлического свинца, находящихся в сверхпроводящем состоянии. На спектре, представленном на рис. 1 δ , эта линия отсутствует, так как критическая температура для металлического свинца не превышает 7 К. Обсуждаемые спектры ЭПР оказались наложенными на плавную кривую, указывающую на то, что в кристалле указанного состава реализовался магниторезистивный эффект. Очертания этой кривой не меняются при изменениях направления внешнего постоянного магнитного поля, однако зависят от температуры.

На рис. 2 показаны спектры ЭПР образца № 1, зарегистрированные при нескольких значениях температуры в ориентации $\vec{H}_0 \| \langle 001 \rangle$. Наблюдае-мые здесь спектры центров Gd³⁺ ($S^{\text{Gd}} = 7/2$, основной мультиплет ⁸S) состоят из семи линий с относительными интегральными интенсивностями, приблизительно соответствующими ряду 7 : : 15: 12: 16: 12: 15: 7. Угловые зависимости положений этих линий в спектрах меняются при вращении образца вокруг кристаллографической оси (110) характерным образом, указывающим на кубическую симметрию магнитных свойств центров Gd³⁺. Однако этот факт может говорить только об усредненной картине, поскольку ЭПР не может зафиксировать молекулярные движения с периодами, намного меньшими периода электромагнитной волны в резонаторе спектрометра.

Рис. 1. Спектры ЭПР монокристаллического образца $Pb_{1-x-y-z}Cu_xMn_yGd_z$ ($x \approx 3 \cdot 10^{-3}$, $y \approx z \approx 1.5 \cdot 10^{-4}$), зарегистрированные на частоте $f = 9.433 \pm 2$ ГГц в ориентации $\vec{H}_0 \parallel \langle 001 \rangle$ при двух значениях температуры: $T_1 = 5$ (*a*) и 50 K (*b*).

Как оказалось, наблюдаемые угловые зависимости положений линий ЭПР центров Gd³⁺ описываются спиновым гамильтонианом (СГ)

$$H_{S} = \beta_{e}gSH_{0} + \frac{1}{60}b_{4}(O_{4}^{0} + 5O_{4}^{4}) + \frac{1}{1260}b_{6}(O_{6}^{0} - 21O_{6}^{4}),$$
(1)

представленным в декартовой системе координат с осями, параллельными кристаллографическим осям (001). В СГ (1): β_e — величина магнетона Бора; g — фактор спектроскопического расщепления (*g*-фактор); b_4 и b_6 — параметры тонкой структуры спектра ЭПР.

На спектрах ЭПР образца № 1, представленных на рис. 2, кроме линий центров Gd³⁺, присутствуют шесть линий одинаковой интенсивности. Поскольку положения этих линий не зависят от ориентации кристалла относительно постоянного внешнего магнитного поля, можно говорить о кубической симметрии центра, ответственного за их появление. Очевидно, что эти линии принадлежат центрам Mn²⁺. Действительно, марганец характеризуется электронным спиновым моментом $S^{Mn} = 5/2$ и ядерным спиновым моментом $I^{Mn} =$ = 5/2. Как следует из рис. 2, здесь из линий тонкой структуры спектра ЭПР, которые связаны с пятью "разрешенными" электронными переходами типа $|M_S\rangle \leftrightarrow |M_S - 1\rangle$, наблюдаются только линии для резонансных переходов $|+1/2\rangle \leftrightarrow |-1/2\rangle$ с $\Delta m_I = 0$. Последнее, очевидно, можно объяснить наложением соответствующих линий ЭПР друг на друга. Подобная ситуация может реализоваться тогда, когда ионы Mn²⁺ оказываются в кристаллических полях кубической группы симметрии (O_h), взаимодействие с которыми характеризуется очень малой величиной постоянной тонкой структуры спектра. Из сказанного выше следует, что наблюдаемые спектры ЭПР центров Mn²⁺ могут быть описаны спиновым гамильтонианом

$$H = g\beta HS + ASI - g_n \beta_n HI, \qquad (2)$$

где A — константа сверхтонкой структуры, g_n — ядерный g-фактор, β_n — ядерный магнетон Бора.

На рис. 1 и 2 обращают на себя внимание необычные формы линий ЭПР центров Gd³⁺ и Mn²⁺, а также необычные температурные изменения формы этих линий. Например, в спектрах ЭПР, зарегистрированных при температуре 5 К, все резонансные линии центров Mn²⁺ и Gd³⁺ имеют форму "перевернутого (инвертированного) колокола". При температуре T = 20 К (рис. 2) линии центров Mn²⁺ приобретают классическую форму сигнала поглощения, обычно наблюдаемого в диэлектрических материалах, в то время как форма линий Gd^{3+} остается пока неизменной. При T == 40 К форма резонансных линий Mn²⁺ оказывается "дайсоновой", а при T = 50 К "дайсоновскую" форму приобретают также линии Gd³⁺. При температурах $T \ge 100$ К все линии ЭПР в образце № 1 оказываются не наблюдаемыми.

Была предпринята попытка описать формы линий наблюдаемых спектров ЭПР центров Gd^{3+} и Mn^{2+} с помощью функции df/dH, где:

$$f = \frac{1}{\pi} \frac{\Gamma + \alpha (H - H_r)}{\Gamma^2 + (H - H_r)^2},$$
(3)

 Γ – полуширина линии, α – параметр асимметрии, Н – текущее значение напряженности внешнего магнитного поля, действующего на образец в резонаторе спектрометра, *H_r* – резонансное значение этого поля. Выражение (3) обычно позволяет описать формы линий ЭПР в проводящих средах в случаях, когда резонансное поглощение микроволновой мощности происходит по магнтно-дипольному механизму. Однако в представленных на рис. 2 спектрах обнаружены такие необычные температурные трансформации формы резонансных линий, которые, как оказалось, не могут быть описаны данной функцией f. Описание оказывается возможным лишь в предположении, что параметр α принимает достаточно большие по величине отрицательные значения ($\alpha \approx -50$). Однако физическая природа такого исключительного значения этого параметра, судя по нашему обзору литературы, пока не ясна.

Экспериментальных величины параметров спиновых гамильтонианов (1) и (2) и параметры формы линий спектров ЭПР центров Gd^{3+} и Mn^{2+} приведены в табл. 1 и табл. 2, соответственно. В этих таблицах символ (*) подчеркивает тот факт, что параметр α функции (3) был взят с отрица-

Рис. 2. Температурные изменения формы линий ЭПР центров Mn^{2+} и Gd^{3+} в образце $Pb_{1-x-y-z}Cu_{x}Mn_{y}Gd_{z}$ ($x \approx 3 \cdot 10^{-3}$, $y \approx z \approx 1.5 \cdot 10^{-4}$) в ориентации $\vec{H}_{0} \parallel \langle 001 \rangle$.

тельным знаком. В табл. 1 линии спектра центров Gd³⁺ пронумерованы слева направо. Поскольку параметры линий 5—7 подобны параметрам линий 3—1, соответственно, в данной таблице представлена информация только о линиях 1—4. В табл. 2 все шесть линий марганца имели примерно одинаковые значения параметров Г и α .

Здесь следует подчеркнуть, что в других образцах $Pb_{1-x-y-z}Cu_xMn_yGd_z$, где концентрация меди была заметно выше или ниже значения $x \approx 3 \cdot 10^{-3}$, описанных выше эффектов не наблюдалось.

Спектры ЭПР монокристаллического образца Pb_{1-x-z}Cu_xGd_z ($x \approx 3 \cdot 10^{-3}$, $z \approx 1.5 \cdot 10^{-4}$, образец \mathbb{N}_2 , примеси марганца нет), зарегистрированные в ориентации $\vec{H}_0 || \langle 001 \rangle$ при трех значениях температуры, представлены на рис. 3. Как видно, в этом образце нет заметных проявлений магниторезистивного эффекта. Кроме того, в спектрах ЭПР образца \mathbb{N}_2 форма линий ЭПР центров Gd³⁺ является "дайсоновской" и резких изменений формы линий ЭПР от температуры не наблю-

Параметры	Температура кристалла, К					
	5	20	40	50	77	
Γ ₁ , мТл	22 ± 2	23 ± 3	24 ± 3	—	_	
α_1	≈—50*	≈—50*	≈—50*	—	_	
Г ₂ , мТл	15 ± 2	16 ± 2	22 ± 3	6 ± 1	8 ± 1	
α ₂	≈-50*	≈-50*	≈-50*	1.5 ± 0.4	1.5 ± 0.4	
Γ ₃ , мТл	15 ± 2	17 ± 2	23 ± 3	6 ± 1	7 ± 1	
α ₃	≈-50*	≈-50*	≈-50*	1.5 ± 0.4	1.5 ± 0.4	
Γ ₄ , мТл	10 ± 1	11 ± 1	11 ± 2	4 ± 0.5	4 ± 0.5	
α_4	≈-50*	≈-50*	≈-50*	1.3 ± 0.3	1.3 ± 0.3	
g	1.992(8)	1.992(7)	1.992(5)	1.992(3)	1.992(1)	
<i>b</i> ₄ , МГц	59.2 ± 0.2	58.8 ± 0.3	58.3 ± 0.5	58 ± 1	_	
<i>b</i> ₆ , МГц	~1	~1	_	_	_	

Таблица 1. Параметры спектров ЭПР центров Gd³⁺

Таблица 2.	Параметры	спектров ЭПР	центров Mn ²⁺
------------	-----------	--------------	--------------------------

Параметры	Температура кристалла, К					
	5	20	40	50	77	
Г, мТл	11±	4.5 ± 0.5	6.2 ± 0.7	8 ± 1	~15	
α	≈-50*	0 ± 0.1	0.6 ± 0.2	1.3 ± 0.3	~2.5	
g	1.994(2)	1.994(1)	1.993(9)	1.993(7)	1.993(5)	
<i>А</i> , МГц	213 ± 5	213 ± 2	213 ± 3	213 ± 4	213 ± 6	

дается, хотя параметры спиновых гамильтонианов с температурой меняются более заметным образом. Примечательно еще одно отличие в спектрах ЭПР

Рис. 3. Спектры ЭПР центров Gd^{3+} образца $Pb_{1-x-z}Cu_xGd_z$ ($x \approx 3 \cdot 10^{-3}, z \approx 1.5 \cdot 10^{-4}$), ориентация $\vec{H}_0 \parallel \langle 001 \rangle$, частота $f \approx 9.334$ ГГц.

центров Gd³⁺ в образцах № 1 и № 2. Оно заключается в том, что в образце № 2 линии ЭПР центров Gd³⁺ наблюдаются при температурах 300 К и выше, в то время как в образце № 1 они оказываются практически невидимыми при T > 77 К. Таким образом, для образца № 1 характерны качественные резкие температурные изменения формы резонансных линий центров Gd³⁺ и существенное понижение температуры, выше которой резонансные линии этих центров не наблюдаются. Очевидно, что эти два факта свидетельствуют о необычно сильном влиянии центров Mn²⁺ на магнитные свойства центров Gd³⁺. Сильное влияние центров Gd³⁺ на центры Mn²⁺ проявилось в качественных резких изменениях формы линий Mn²⁺ от температуры. Изменения формы происходят в достаточно узких температурных диапазонах 5-20 и 40-50 К, что свидетельствует о том, что именно в этих диапазонах в образце № 1 происходят изменения в механизмах кинетических процессов, связанных с примесными центрами Mn²⁺ и Gd³⁺.

Таким образом, основным результатом данной работы является обнаружение сильной взаимной зависимости свойств примесных центров Mn^{2+} и Gd^{3+} в узкозонном полупроводнике $Pb_{1-x-y-z}Cu_xMn_yGd_zS$, наблюдаемой при концентрации меди $x \approx 3 \cdot 10^{-3}$.

СПИСОК ЛИТЕРАТУРЫ

- 1. Равич Ю.И., Ефимова Б.А., Смирнов И.А. Методы исследования полупроводников в применении к халькогенидам свинца PbTe, PbSe и PbS. М.: Наука, 1968. 384 с.
- Кайданов В.И., Равич Ю.И. // УФН. 1985. Т. 145. № 1. С. 51.
- Bozin, E.S., Malliakas C.D., Souvatzis P. et al. // Science. 2010. V. 330. P. 1660.
- Zhang Yi, Xuezhi Ke, Kent P.R.C. et al. // Phys. Rev. Lett. 2011. V. 107. Art. No. 175503.
- Biswas K., He J., Blum I.D. et al. // Nature. 2012. V. 489. P. 414.

- 6. *Mukherjee S., Li D., Gautam A. et al.* Lead salt thin film semiconductors for microelectronic applications. Kerala: Transworld Research Network 37/661, 2010. 88 p.
- Pei Yan-Ling, Liu Yong // J. Alloys Compounds. 2012. V. 514. P. 40.
- 8. *Kossut J., Gaj J.A.* Introduction to the physics of diluted magnetic semiconductors. Berlin-Heidelberg: Springer-Verlag, 2010. 469 p.
- Голенищев-Кутузов В.А., Синицин А.М., Лабутина Ю.В., Уланов В.А. // Изв. РАН. Сер. физ. 2018. Т. 82. № 7. С. 852; Golenishchev-Kutuzov V.A., Sinicin A.M., Labutina Yu.V., Ulanov V.A. // Bull. Russ. Acad. Sci. Phys. 2018. V. 82. No. 7. P. 761.
- 10. Синицин А.М., Зайнуллин Р.Р., Уланов В.А. // Пробл. энергетики. 2018. Т. 20. № 7-8. С. 124.

Mutual dependence of properties of Mn^{2+} and Gd^{3+} impurity ions in a narrow-band semiconductor $Pb_{1-x-y-z}Cu_xMn_yGd_zS$: study using electron paramagnetic resonance spectroscopy

V. A. Ulanov^{a, b, *}, R. R. Zainullin^a, I. V. Yatsyk^b, T. A. H. Housheya^a

^a Kazan State Power Engineering University, Kazan, 420066 Russia ^b Zavoisky Physical-Technical Institute, Kazan Scientific Center of RAS, Kazan, 420029 Russia *e-mail: ulvlad@inbox.ru

A pronounced magnetoresistive effect and unusual temperature changes in the shapes of spectral lines of the Gd³⁺ and Mn²⁺ paramagnetic centers were found by EPR method in the mixed Pb_{1-x-y-z}Cu_xMn_yGd_z ($x \approx 3 \cdot 10^{-3}, y \approx z \approx 1.5 \cdot 10^{-4}$) crystalline samples. The spin-Hamiltonians parameters and parameters of the spectral lines of the centers under study have been determined.