УДК 524.1

МОДЕЛИРОВАНИЕ СПЕКТРА МЮОНОВ ВЫСОКИХ ЭНЕРГИЙ НА БОЛЬШИХ ГЛУБИНАХ

© 2021 г. С. С. Хохлов^{1, *}, А. Г. Богданов¹, Р. П. Кокоулин¹, С. В. Мальцева¹, А. А. Петрухин¹, Е. А. Юрина¹

¹Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

*E-mail: sskhokhlov@mephi.ru

Поступила в редакцию 19.10.2020 г. После доработки 19.11.2020 г. Принята к публикации 28.12.2020 г.

Приводится описание алгоритма работы программы для моделирования процессов потерь энергии мюонов высоких энергий. Обсуждаются результаты моделирования спектра мюонов и образованных ими каскадных ливней на глубине воды 4.5–5.5 км.

DOI: 10.31857/S0367676521040153

введение

Спектр мюонов сверхвысоких энергий (very high energy, VHE-мюонов с энергиями выше 100 ТэВ) представляет особый интерес для физики высоких энергий. Надежное измерение спектра позволит дать ответы на многие важные вопросы физики космических лучей и астрофизики (природа излома, происхождение нейтрино высоких энергий, рождение мюонов в "быстрых" процессах и др.).

С появлением гигатонных нейтринных телескопов сети GNN (IceCube, Baikal-GVD и KM3Net) появилась реальная возможность измерения спектра мюонов с энергиями более 100 ТэВ.

Специфика нейтринных телескопов (большие расстояния между оптическими модулями, проблемы разделения VHE-мюонов и групп мюонов) требует разработки специальных методов для измерения энергетического спектра мюонов и проведения разнообразных расчетов [1]. Цель данной работы — разработка быстрой программы для моделирования потерь мюонов высоких энергий и определение порога, выше которого спектр максимальных каскадов позволяет восстанавливать спектр VHE-мюонов.

ИСПОЛЬЗУЕМЫЙ ПОДХОД И СХЕМА МОДЕЛИРОВАНИЯ

При моделировании учитывались четыре процесса потерь энергии мюона: ионизационные потери, образование e^+e^- -пар, тормозные потери и неупругое взаимодействие мюонов с ядрами Средние потери энергии мюона в первом приближении можно оценить с помощью формулы:

$$-\frac{dE}{dx} = a + bE,\tag{1}$$

где *а* и *b* – коэффициенты, слабо зависящие от энергии мюона.

Для ускорения моделирования каждый процесс потери энергии разделен по относительной передаче энергии мюона $v = \varepsilon/E$ на непрерывную и дискретную части. Непрерывные потери включают все потери с относительной передачей энергии мюона $v < v_{min}$, к дискретным потерям отнесены все потери с $v > v_{min}$. По умолчанию величина $v_{min} = 0.001$, но может быть увеличена для ускорения работы программы или уменьшена для увеличения точности моделирования, например, для детекторов относительно небольших размеров.

При расчете ионизационных потерь используются формулы из [2], сечение образования дельта-электронов взято из [3], для расчета процесса образования e^+e^- -пар используются формулы [4, 5], чтобы рассчитать сечение тормозного излучения задействованы формулы из статей [6, 7], при расчетах сечения неупругого рассеяния мюонов на ядрах использованы статьи [8, 9].

В начале каждого шага моделирования для мюона с энергией E_0 определяется длина свободного пробега мюона x, при этом учитываются процессы с большой передачей энергии. Сначала

Рис. 1. Пример моделированного события с энергией мюона E = 100 ТэВ.

вычисляются интегральные сечения взаимодействий Σ:

$$\Sigma_{i} = \int_{v_{min}}^{1} \sigma_{i}(E_{0}, v) dv, \qquad (2)$$

Затем, при помощи случайной величины *u*, равномерно распределенной на интервале (0; 1), разыгрывается длина свободного пробега мюона:

$$x = -\frac{\ln u}{\Sigma_{tot}}.$$
 (3)

Далее рассчитываются непрерывные потери энергии $E_1 = E_0 - xdE/dx$, причем расчет dE/dx проводится по формуле (1), но с параметром $b_{\text{непр}}$:

$$b_{\text{Henp}} = \int_{0}^{v_{min}} \sigma_{tot} (E_0, v) v dv.$$
(4)

Если по результатам расчета выясняется, что энергии мюона недостаточно, чтобы преодолеть пробег x ($E_0 < xdE/dx$), то длина пробега пересчитывается как $x' = E_0/dE/dx$, после чего мюон считается остановившимся и моделирование данного события прекращается. В ином случае рассчитывается энергия мюона в конце пробега с учетом непрерывных потерь $E_1 = E_0 - xdE/dx$.

Затем проводится выбор процесса, по которому произойдет дискретная потеря энергии мюона. Выбор проводится на основе новой случайной величины u и интегральных сечений (2), рассчитанных для энергии мюона E_1 .

Рис. 2. Результаты моделирования: 1 -спектр мюонов на поверхности ($\gamma = -3.7$); 2 -спектр мюонов на глубине воды 5 км; 3 -спектр всех каскадов на глубинах 4.5–5.5 км; 4 -спектр максимальных каскадов на глубинах 4.5–5.5 км.

Затем, путем решения интегрального уравнения, при помощи случайной величины u разыгрывается энергия ε , передаваемая мюоном в каскад:

$$u\Sigma = \int_{v_{min}}^{\varepsilon/E_1} \sigma(E_1, v) dv ; \qquad (5)$$

далее из рассчитанной кинетической энергии мюона вычитается полученная энергия каскада, $E_2 = E_1 - \varepsilon$.

Если энергия мюона на выходе цикла моделирования меньше 10 ГэВ, то моделирование события прекращается, поскольку такой мюон уже не может дать мощных каскадов и до остановки ему остается пройти в воде около 50 м. Если энергия мюона на выходе из цикла больше 10 ГэВ, то начинается новый цикл с новой стартовой энергией $(E_0 = E_2)$.

РЕЗУЛЬТАТЫ ТЕСТИРОВАНИЯ ПРОГРАММЫ

Для проверки программы были промоделированы потери мюонов высоких энергий в воде. На рис. 1 приведен пример события для мюона с начальной энергией 100 ТэВ. Скачкообразные изменения энергии мюона связаны с потерями энергии в результате тормозных потерь и неупругого рассеяния на ядрах. В данном событии мюон достиг глубины 24 км. Время моделирования такого события составило 18 с. Для ускорения работы программы были рассчитаны таблицы интегральных сечений, используемых в формулах (2)–(5). Такой подход позволил увеличить скорость расчета примерно в 400 раз.

Было провелено молелирование 10 миллионов событий. в которых лифференциальный спектр стартовых энергий мюонов имел степенную форму с показателем $\gamma = -3.7$ при минимальной энергии 2 ТэВ. В моделированных событиях анализировался спектр мюонов на глубине 5 км. спектр всех каскадов на глубине от 4.5 до 5.5 км и спектр максимальных в событиях каскадов на глубинах 4.5-5.5 км. Полученные результаты представлены на рис. 2. Как видно из рисунка, поток мюонов высоких энергий уменьшился на глубине в 60-70 раз. Спектр максимальных в событии каскадов после энергий 3–5 ТэВ стремится к спектру всех каскалов, что позволяет использовать спектр максимальных каскалов при реконструкции спектра мюонов на глубине при измерениях на черенковских нейтринных водных телескопах.

ЗАКЛЮЧЕНИЕ

Разработана программа для моделирования спектра VHE мюонов на больших глубинах, способная моделировать 25—40 событий в секунду, позволяющая проводить отладку методов измерения энергетического спектра мюонов в гигатонных нейтринных телескопов сети GNN (IceCube, Baikal-GVD и KM3Net). Проведенное моделирование показало, что спектр максимальных каскадов при энергиях больше 3–5 ТэВ позволяет восстанавливать спектр мюонов на глубине.

Работа выполнена с использованием вычислительных мощностей уникальной научной установки "Экспериментальный комплекс НЕВОД" при поддержке Министерства науки и высшего образования РФ (проект "Фундаментальные проблемы космических лучей и темная материя" № 0723-2020-0040).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Khokhlov S.S., Bogdanov A.G., Kokoulin R.P. et al.* // Phys. Atom. Nucl. 2019. V. 82. No. 6. P. 689.
- Groom D.E., Mokhov N.V., Striganov S.I. // Atom. Data Nucl. Data Tables. 2001. V. 78. No. 2. P. 183.
- 3. *Росси Б*. Частицы больших энергий, М.: Гостехиздат, 1955. 636 с.
- Kokoulin R.P., Petrukhin A.A. // Proc. 12th ICCR. (Hobart, 1971). V. 6. P. 2436.
- 5. *Кельнер С.Р. //* Яд. физ. 1998. Т. 61. С. 511; *Kelner S.R. //* Phys. Atom. Nucl. 1998. V. 61. P. 448.
- Кельнер С.Р., Кокоулин Р.П., Петрухин А.А. // Яд. физ. 1997. Т. 60. С. 657; Kelner S.R., Kokoulin R.P., Petrukhin A.A. // Phys. Atom. Nucl. 1997. V. 60. P. 576.
- Kelner S.R., Kokoulin R.P., Petrukhin A.A. About cross section for high-energy muon bremsstrahlung. Preprint MEPhI 024-95, CERN SCAN-9 510 048. M., 1995.
- Borog V.V., Petrukhin A.A. // Proc. 14th ICRC. (Tokyo, 1975). V. 6. P. 1949.
- Brodsky S.J., Close F.E., Gunion J.F. // Phys. Rev. D. 1972. V. 6. P. 177.

Simulation of very high-energy muon spectrum at great depths S. S. Khokhlov^{*a*, *}, A. G. Bogdanov^{*a*}, R. P. Kokoulin^{*a*}, S. V. Maltseva^{*a*}, A. A. Petrukhin^{*a*}, E. A. Yurina^{*a*}

^aNational Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, Russia *e-mail: sskhokhlov@mephi.ru

Description of the algorithm of the program for simulation of the processes of energy loss of high-energy muons is given. The results of simulation of the spectrum of muons and cascade showers generated by muons at a water depth of 4.5-5.5 km are discussed.