УДК 52.063

РЕГИСТРАЦИЯ ГАММА-КВАНТОВ ОТ КРАБОВИДНОЙ ТУМАННОСТИ И БЛАЗАРА МАРКАРЯН 421 В ОБЛАСТИ ЭНЕРГИЙ БОЛЕЕ 3–4 ТэВ АТМОСФЕРНЫМ ЧЕРЕНКОВСКИМ ТЕЛЕСКОПОМ В ЭКСПЕРИМЕНТЕ ТАІGA

© 2021 г. Л. Г. Свешникова^{1, *}, И. И. Астапов², П. А. Безъязыков³, М. Бланк^{1,3}, А. Н. Бородин⁴, М. Брюкнер⁵, Н. М. Буднев³, А. Булан¹, А. Вайдянатан⁵, Р. Вишневский⁵, П. Волчугов¹, Д. Воронин⁶, А. Р. Гафаров³, А. Ю. Гармаш^{6, 7}, В. М. Гребенюк^{4, 8}, О. А. Гресс³, Т. И. Гресс³, А. А. Гринюк⁴, О. Г. Гришин³, А. Н. Дячок³, Д. П. Журов³, А. В. Загородников³, А. Л. Иванова³, Н. Н. Калмыков¹, В. В. Киндин², С. Н. Кирюхин³, В. А. Кожин¹, Р. П. Кокоулин², К. Г. Компаниец², Е. Е. Коростелева¹, Е. А. Кравченко^{6, 7}, А. П. Крюков¹, Л. А. Кузьмичев¹, А. Кьявасса¹⁰, М. Лаврова³, А. А. Лагутин¹¹, Ю. Лемешев³, Б. К. Лубсандоржиев¹²,
Н. Б. Лубсандоржиев¹, Р. Р. Миргазов³, Р. Мирзоян^{3, 13}, Р. Д. Монхоев³, Э. А. Осипова¹, А. Пан³, М. И. Панасюк¹, Л. В. Паньков³, А. Л. Пахоруков³, А. А. Петрухин², В. А. Полещук³,
М. Попеску¹⁴, Е. Г. Попова¹, А. Порелли⁵, Е. Б. Постников¹, В. В. Просин¹, В. С. Птускин¹⁵,
А. А. Пушнин³, Р. И. Райкин¹¹, Г. И. Рубцов¹², Е. В. Рябов³, Я. И. Сагань^{4, 8}, В. С. Самолига³, А. В. Соколов^{6, 7}, Я. Суворкин², В. А. Таболенко³, А. Танаев², Б. А. Таращанский³, М. Терновой², Л. Г. Ткачев^{4, 8}, М. Тлужиконт⁹, Н. Ушаков⁶, Д. Хорнс⁹, И. И. Яшин²

¹Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова",

Научно-исследовательский институт ядерной физики имени Д.В. Скобельцына, Москва, Россия

²Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский ядерный университет "МИФИ", Москва, Россия

³Федеральное государственное бюджетное образовательное учреждение высшего образования "Иркутский государственный университет", Научно-исследовательский институт прикладной физики, Иркутск, Россия

⁴Международная межправительственная организация Объединенный институт ядерных исследований, Дубна, Россия

⁵Немецкий электронный синхротрон (DESY), Цойтен, Германия

⁶Федеральное государственное автономное образовательное учреждение высшего образования "Новосибирский национальный исследовательский государственный университет", Новосибирск, Россия

⁷Федеральное государственное бюджетное научное учреждение

"Федеральный исследовательский центр Институт прикладной физики Российской академии наук", Нижний Новгород, Россия

⁸Государственное бюджетное образовательное учреждение высшего образования Московской области "Университет "Дубна", Дубна, Россия

⁹Институт экспериментальной физики университета Гамбурга, Гамбург, Германия

¹⁰Физический факультет университета Турина и Национальный институт ядерной физики, Турин, Италия

¹¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Алтайский государственный университет", Барнаул, Россия

ытиискии госубарственный университет , Бирниул, Госсия

¹²Федеральное государственное бюджетное учреждение науки

Институт ядерных исследований Российской академии наук, Москва, Россия

¹³Институт Макса Планка, Мюнхен, Германия

¹⁴Институт космических наук, Бухарест, Румыния

¹⁵Федеральное государственное бюджетное учреждение науки

Институт Земного магнетизма, ионосферы и распространения радиоволн имени Н.В. Пушкова Российской академии наук, Москва, Россия

ской академий наук, тоской, 1

*E-mail: tfl10@mail.ru

Поступила в редакцию 19.10.2020 г. После доработки 19.11.2020 г. Принята к публикации 28.12.2020 г.

В Тункинской долине, в 50 км от озера Байкал в настоящее время проводятся работы по созданию гибридной гамма-обсерватории TAIGA, предназначенной для исследования гамма-излучения и потоков заряженных космических лучей в диапазоне $10^{13}-10^{18}$ эВ. Представлены первые результаты по регистрации гамма-квантов от Крабовидной туманности за 44 ч наблюдения и блазара Маркарян 421 за 62 ч со значимостью около 5–6 сигма одним из телескопов TAIGA-IACT.

DOI: 10.31857/S0367676521040372

введение

Астрофизический комплекс TAIGA (Tunka advanced instrument for cosmic ray physics and gammaray astronomy) [1-4], расположенная в Тункинской долине недалеко от озера Байкал, является установкой, нацеленной на исследования гаммаизлучения в области более 3-4 ТэВ. Это самая северная обсерватория в мире, что позволяет исследовать источники с высокими склонениями. В ней реализован гибридный метод регистрации гамма-квантов [1-4], в котором широкоугольные черенковские станции (TAIGA-HiSCORE) и несколько атмосферных черенковских телескопов (АЧТ) (принятое в английской литературе сокращение – IACT (imaging atmospheric Cherenkov telescope) располагаются на достаточно большом расстоянии друг от друга [1]. В 2017 был введен в строй и начал полноценно функционировать первый атмосферный черенковский телескоп, в 2018 г. представлены первые результаты по реализации гибридного метода детектирования [7], порог которого оказывается около 40 ТэВ для гамма-квантов.

ТэВ-ное излучение от Крабовидной туманности (Краба), которая считается остатком сверхновой, вспыхнувшей в 1054 г. относительно недалеко от Земли, впервые было зарегистрировано около 30 лет назад [6], что положило начало бурно развивающейся гамма-астрономии высоких энергий. С тех пор проведено с десяток новых экспериментов, открыто около двухсот ТэВ-ных источников (TeV-Catalogue) [7], но каждый новый эксперимент начинал с регистрации гамма-излучения от Крабовидной туманности, которая рассматривается как "стандартный гамма источник".

Для сопоставления данных с результатами, полученными на других установках при более низких, ТэВ-ных энергиях, в настоящей статье представлены результаты по регистрации гамма-излучения от Крабовидной туманности и блазара Маркарян 421 одним из телескопов эксперимента TAIGA. Маркарян 421 также является одним из наиболее изученных блазаров с быстроменяющимся потоком в ТэВ-ном энергетическом диапазоне [8].

ТЕЛЕСКОП ТАІGА-ІАСТ

Телескоп ТАІGА-ІАСТ имеет составное зеркало системы Дэвиса-Коттона площадью 8.5 м² из 29 сегментов, с фокусным расстоянием – 4.75 м. В фокусе зеркал установлена регистрирующая камера из 560 ФЭУ с диаметром фотокатода около 19 мм кажлый. Диаметр угла обзора камеры – 9.6°. Угол обзора каждого пикселя – 0.36°. Камера собирается из однотипных кластеров по 28 ФЭУ в каждом (в нескольких кластерах на краю камеры число ФЭУ меньше 28). Описание системы сбора информации, триггерной системы и калибровки можно найти в [1, 2, 4]. Существенно новым в работе телескопа в сезоне 2019-2020 было применение новой методики слежения за источником, "wobbling" метод, предложенный в [9] и реализованный в TAIGA [10]. Он заключается в том, что при слежении за источником с прямым восхождением Ra и склонением Dec телескоп направлен не на источник, а на точку $Ra + 1.2^\circ$, а затем через 20 мин перенаправлен на точку $Ra - 1.2^{\circ}$ при фиксированном склонении. В результате в каждый момент времени положение источника (*Ra*, *Dec*) оказывается не в центре системы координат камеры, а сдвинуто на ± 1.2 градуса в точку X_{on} , Y_{on} , меняющуюся со временем. Положение фоновой области в каждый момент времени выбирается как "анти-источник" с координатами $X_{off} = -X_{on}$, $Y_{off} = -Y_{on}$. Преимуществом такого подхода является экономия времени, так как не надо выделять отдельное время на измерение фона около источника. Во-вторых, исключаются возможные погрешности, связанные с неоднородностью камеры и неоднородностью условий наблюдения, так как траектория источника в камере и траектория фоновых измерений практически совпадает со сдвигом по времени 20 мин.

Наблюдения телескопом в сезоне 2019—2020 гг. проводились с октября по апрель с разделением времени между 4 основными источниками: ближайшими блазарами Mkn421, Mkn501, Крабом и Сверхновой SNRG106.6 + 2.94 (Bumerang). Темп счета зависел от погоды и снежного покрова и, в среднем, составлял около 100 Гц. Темп счета событий, в которых регистрировался сигнал от ШАЛ, составлял около 8–12 Гц.

РЕКОНСТРУКЦИЯ СОБЫТИЙ

Процедура реконструкции событий состоит из формирования имиджа события на матрице ФЭУ (выделение пикселей), определения параметров имиджа, и разбивается на несколько этапов.

А) Выходные данные камеры телескопа являются суммой амплитуд полезного сигнала и фона (пьедесталы). Величина пьедесталов и их среднеквадратичные отклонения для каждого пикселя вычисляются по 2-х минутным интервалам для исключения временной зависимости. После вычитания пьедесталов формируется матрица амплитуд $Am(X_i, Y_i)$ в числе фотоэлектронов (ф. э.).

Б) Проводится процедура очищения (cleaning) имиджа от пикселей, амплитуда сигнала в которых происходит от флуктуации светового фона: пиксель входит в имидж ШАЛ и отбирается, если амплитуда превышает "высокий" порог N_1 , и есть хотя бы один соседний пиксель, амплитуда в котором превышает значение "низкого" порога N_2 . Обычно пороги выбираются как $N_1 \sim 14-16$ ф. э., $N_2 = 7-8$ ф. э. при флуктуациях фона 2–3 ф. э. После очищения имиджа определяется полное число пикселей, вошедших в имидж N_{pix} , и полное число фотоэлектронов в имидже *Size*.

В) Определение параметров эллипса Хилласа [11] по матрице $Am(X_i, Y_i)$ для двух наборов: относительно положения источника X_{on} , Y_{on} и относительно положения фона X_{off} , Y_{off} : dist — расстояние от взвешенного центра имиджа до положения источника (X_{on} , Y_{on}) или фона (X_{off} , Y_{off}); width — ширина эллипса, length — длина эллипса, Con — концентрация, alpha — угол между основной осью эллипса Хилласа и вектором, направленным из центра тяжести имиджа на положение источника или фона.

Г) Проведение полного Монте-Карло (М-К) моделирования [12] с учетом конструкции установки, оптической системы телескопа, триггерной системы сбора данных для фона (протонов, ядер гелия) и гамма квантов; настройка М-К до полного согласования параметров экспериментального фона и фона, полученного в М-К моделировании: по *Size*, по спектрам, по угловому и пространственному распределению имиджей по камере. Таким образом находится набор параметров имиджей, позволяющий наиболее эффективно подавить фон и зарегистрировать гамма-кванты.

Рис. 1. Распределение по параметру *alpha* для наблюдений источника ("*On*") и для фоновых ("*Off*") событий от Крабовидной туманности. Критерии отбора: *Size* > 125 ф. э.; *dist* = 0.36° - 1.44° , 0.024° < *width* < < 0.068° × (lg *Size*-0.047)°, *Length* < 0.31° , *Con* > 0.54.

РЕЗУЛЬТАТЫ

Общая экспозиция Краба в Тункинской долине в сезоне 2019—2020 гг. составила 31 день с октября по конец февраля с хорошей погодой, по 2—4 ч в день, всего около 90 ч, это около 50% полного возможного времени наблюдения Краба в Тункинской долине. За это время получено около 3 млн. событий, прошедших триггер отбора. В настоящей статье мы представляем первую часть статистики — 1.5 млн — событий, полученных за 13 дней в октябре — ноябре, и прошедших триггер. Всего — 44 ч наблюдения.

При отборе гамма-подобных ливней наиболее общепринятым и самым простым распределением для отличия гамма-ливней от ливней от протонов и ядер КЛ (после подавления фона по остальным параметрам Хилласа) является распределение по параметру углу alpha. Все гамма-кванты, пришедшие от источника ("On") имеют измеренный угол *alpha* менее 15 градусов, а для фоновых событий ("Off") распределение по alpha равномерное, как следует из М-К симуляций. На рис. 1 представлено распределение по alpha для "On" событий и для "Off" событий с шагом 4°, отобранных по оптимальным критериям: Size > 125 ф.э; dist = $= 0.36^{\circ} - 1.44^{\circ}, 0.024 \le width \le 0.068^{\circ} \times \lg Size - 0.047^{\circ},$ *length* < 0.31°, Con > 0.54. В области *alpha* < 10° оказалось, что число событий при направлении на источник составляет $N_{on} = 490$, а при направлении на фон $N_{off} = 337$, избыток составляет Exc == 162 событий со значимостью 5.62 σ , а в области

Рис. 2. Распределение по параметру *alpha* для "*On*" и для "*Off*" событий от блазара Мкн421. Критерии отбора: *Size* > 172 ф. э.; *dist* = 0.5° - 1.25° , 0.024° < *Width* < < 0.068° × lg*Size*- 0.045° , *Length* < 0.31° , *Con* > 0.44.

alpha < 6° Exc = 141 событие со значимостью около 5.87 σ . Подавление фона для Краба по вышеуказанным критериям при отборе *Size* > 125 ϕ . е. происходит в 3000 раз, а пороговая энергия регистрации оказывается около 4 ТэВ.

Второй зарегистрированный источник – это хорошо измеренный в ТэВ-ном излучении блазар Маркарян 421 [8]. Экспозиция Мкн421 в Тункинской долине в сезоне 2019-2020 составила с ноября по конец февраля 62 ч с хорошей погодой. На рис. 2 представлено распределение по *alpha* для "On" событий и для "Off" событий с шагом 4°, отобранных по оптимальным критериям: Size > > 172 \oplus . e.; *dist* = 0.5°-1.25°, 0.024° < *width* < 0.068° × × lg *Size*-0.045°, *length* < 0.31°, *Con* > 0.44. В области $alpha < 10^{\circ}, N_{on} = 48, N_{off} = 11$, избыток составляет Exc = 37 ливней со значимостью 5.77 σ , а в области $alpha < 6^{\circ} Exc = 141$ событие со значимостью около 50. Критерии отличаются от критериев для Краба, поскольку Мкн421 наблюдается под зенитным углом 10–15 град, а Краб под зенитным углом 30-40 град, что приводит к понижению фона и порога регистрации. Однако средний поток от Мкн421 ниже, чем от Краба в среднем и только во время вспышек превышает его. Коэффициент подавление фона для Мкн421 по вышеуказанным критериям с порогом Size > 172 ф. е. составляет 1800, а пороговая энергия регистрации оказывается около 2-3 ТэВ. Опираясь на данные М-К симуляций было показано, что полученные спектры по энергии гамма-квантов от Краба и Мкн421

не противоречат измерениям, проведенным ранее в других экспериментах.

ЗАКЛЮЧЕНИЕ

Отработана методика восстановления параметров имиджей в камере телескопа TAIGA-IACT. Показана эффективность "Wobbling" моды слежения телескопом за источником, позволяющая эффективно использовать время наблюдения источника. Проведено моделирование методом Монте-Карло регистрации гамма-квантов и адронов и получено хорошее согласие с экспериментом. Найдены оптимальные параметры подавления фона. Обнаружен избыток гамма-квантов от Крабовидной туманности в интервале энергией ~4–30 ТэВ, 178 гамма-квантов за 44 ч наблюдения со значимостью ~5.9 σ . Получен избыток гамма-квантов от блазара Мкн421 за 62 ч наблюдения 37 гамма-квантов в области энергий 3–10 ТэВ со значимостью ~5 σ .

Работа поддержана Минобрнауки России (тема государственного задания FZZE-2020-0024, соглашение № 075-15-2019-163), РНФ (проекты № 19-72-20067 (раздел 1, 3, 4, 5), № 19-72-20173 (раздел 2), РФФИ (проекты № 19-52-44002 и № 19-32-60003).

СПИСОК ЛИТЕРАТУРЫ

- Кузьмичев Л.А., Астапов И.И., Безъязыков П.А. и др. // ЯФ. 2018. Т. 81. № 1. С. 1; Kuzmichev L.A., Astapov I.I., Bezyazeekov P.A. et al. // Phys. Atom. Nucl. 2018. V. 81. No. 4. P. 497.
- Budnev N., Astapov I., Bezyazeekov P. et al. // J. Instrum. 2020. V. 15. No. 09. P. 1.
- 3. *Tluczykont M., Hampf D., Horns D. et al.* // Astropart. Phys. 2014. V. 56. P. 42.
- 4. *Kuzmichev L. (TAIGA Collaboration) //* Nucl. Instrum. Meth. Phys. Res. A. 2020. V. 952. Art. No. 161830.
- Свешникова Л.Г., Астапов И.И., Безъязыков П.А. и др.// Изв. РАН. Сер. физ. 2019. Т. 83. № 8. С. 1061; Sveshnikova L.G., Astapov I.I., Bezyazeekov P.A. et al. // Bull. Russ. Acad. Sci. Phys. 2019. V. 83. No. 8. P. 922.
- Weekes T.C., Cawley M.F., Fegan D.J. et al. // Astrophys. J. 1989. V. 342. P. 379.
- 7. https://www.ssdc.asi.it/tgevcat.
- Punch M., Akerlof C.W., Cawley M.F. et al. // Nature. 1992. V. 358. No. 6386. P. 477.
- Stepanian A., Lamb R. et al. // Astropart. Phys. 1994.
 V. 2. No. 2. P. 137.
- *Zhurov D., Gress O., Sidorov D. et al.* // J. Phys. Conf. Ser. 2019. V. 1181. Art. No. 012045.
- Hillas A.M. // Proc. 19th ICRC. (La Jolla, 1985). V. 3. P. 445.
- 12. *Grinyuk A., Postnikov E., Sveshnikova L. //* Phys. Atom. Nucl. 2020. V. 83. P. 262.

ИЗВЕСТИЯ РАН. СЕРИЯ ФИЗИЧЕСКАЯ

Detection of gamma-rays with energy more than 3–4 TeV from Crab Nebula and blazar Markaryan 421 by imaging atmospheric Cherenkov telescope in experiment TAIGA

L. G. Sveshnikova^{a, *}, I. I. Astapov^d, P. A. Bezyazeekov^b, M. Blank^{a, c}, A. Borodin^c, M. Brückner^l, N. Budnev^b, A. Bulan^a, A. Vaidyanathan^e, R. Wischnewski^l, P. Volchugov^a, D. Voronin^l, A. Gafarov^b, A. Garmash^{e, h}, V. Grebenyuk^{c, j}, O. Gress^b, T. Gress^b, A. Grinyuk^c, O. Grishin^b, A. Dyachok^b, D. Zhurov^b, A. Zagorodnikov^b, A. Ivanova^b, N. Kalmykov^a, V. Kindin^d, S. Kiryuhin^b, R. Kokoulin^d, K. Kompaniets^{*d*}, E. Korosteleva^{*a*}, V. Kozhin^{*a*}, E. Kravchenko^{*e*, *h*}, A. Kryukov^{*a*}, L. Kuzmichev^{*a*}, A. Chiavassaⁿ, M. Lavrova^c, A. Lagutinⁱ, Yu. Lemeshev^b, B. Lubsandorzhiev^f, N. Lubsandorzhiev^a, R. Mirgazov^b, R. Mirzovan^{a, k}, R. Monkhoev^b, E. Osipova^a, A. Pan^c, M. Panasyuk^a, L. Pankov^b, A. Pakhorukov^b, A. Petrukhin^d, V. Poleschuk^b, M. Popesku^o, E. Popova^a, A. Porelli^l, E. Postnikov^a, V. Prosin^a, V. Ptuskin^g, A. Pushnin^b, R. Raikinⁱ, G. Rubtsov^f, E. Rjabov^b, Y. Sagan^{c, j}, V. Samoliga^b, A. Sidorenkov^a, A. Silaev^a, A. Silaev, Jr.^a, A. Skurikhin^a, M. Slunecka^c, A. Sokolov^{e, h}, Y. Suvorkin^b, V. Tabolenko^b, A. Tanaev^b, B. Tarashansky^b, M. Ternovoy^b, L. Tkachev^{c, j}, M. Tluczykont^m, N. Ushakov^f, D. Horns^m, I. Yashin^d ^aSkobeltsyn Institute of Nuclear Physics, Moscow State University, Moscow, Russia ^bInstitute of Applied Physics, Irkutsk State University, Irkutsk, Russia ^cJoint Institute for Nuclear Research, Dubna, Russia ^dNational Research Nuclear University MEPhI, Moscow, Russia ^eNovosibirsk State University. Novosibirsk. Russia ^fInstitute for Nuclear Research RAS, Moscow, Russia ^gPushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation RAS, Moscow, Russia ^hBudker Institute of Nuclear Physics SB RAS. Novosibirsk. Russia ⁱAltai State Univeristy, Barnaul, Russia ^jDubna State University, Dubna, Russia ^kMax-Planck-Institute for Physics, Munich, Germany ¹DESY, Zeuthen, Germany ^mInstitut fur Experimentalphysik, University of Hamburg, Hamburg, Germany ⁿDipartimento di Fisica Generale Universita di Torino and INFN, Torino, Italy

^oInstitute of Space Science, Bucharest, Romania

*e-mail: tfl10@mail.ru

TAIGA is currently underway in the Tunka valley, 50 km from the lake Baikal, create a hybrid gamma-ray observatory, designed to study gamma radiation and charged cosmic ray fluxes in the energy range $10^{13}-10^{18}$ eV. We present the first results on the detection of gamma-rays from the Crab Nebula for 44 hours of observation and the Mkn421 blazer for 62 hours of observation with a significance of about 5–6 sigma, registered by one of the TAIGA-IACT telescopes.

<u>№</u> 4

том 85

2021