УДК 539.1.074.823

РАСЧЕТ ЭФФЕКТИВНОСТИ И ЭНЕРГЕТИЧЕСКОГО РАЗРЕШЕНИЯ ПРИ РАЗРАБОТКЕ ДЕТЕКТОРА БЫСТРЫХ НЕЙТРОНОВ С ¹⁰В-КОНВЕРТЕРОМ

© 2021 г. А. А. Каспаров^{1, *}, С. И. Поташев¹, А. А. Афонин¹, Ю. М. Бурмистров¹, А. И. Драчев¹

¹Федеральное государственное бюджетное учреждение науки Институт ядерных исследований Российской академии наук, Москва, Россия

*E-mail: kasparov200191@gmail.com

Поступила в редакцию 20.11.2020 г. После доработки 28.12.2020 г. Принята к публикации 27.01.2021 г.

При разработке нового позиционно-чувствительного ионизационного детектора нейтронов с энергиями выше 1 МэВ моделируются события эмиссии ядер ⁷Li и ⁴He из слоя ¹⁰B. Ожидаемое относительное разрешение по энергии нейтрона составляет ~6%, а эффективность детектора в диапазоне энергий от 1 до 7 МэВ оценивается как ~10⁻⁷. Таким образом появляется возможность определять энергию и координаты нейтрона без измерения времени пролета.

DOI: 10.31857/S0367676521050124

введение

Позиционно-чувствительные детекторы (ПЧД) имеют большое применение в физике [1]. ПЧД является одним из основных элементов установки малоуглового рассеяния нейтронов, используемой для исследования сплавов [2] и магнитных структур [3]. На практике широко используются одно- и двухкоординатные газовые ПЧД, в которых конвертором нейтронов служат газы BF₃ и ³He [4, 5].

В ИЯИ РАН создан двухкоординатный ПЧД тепловых нейтронов на основе ¹⁰В [6]. Испытания детектора в потоке медленных и быстрых нейтронов до энергии 7 МэВ показали, что спектр амплитуд вторичных ядер (4 He и 7 Li) в области энергий от 1 до 7 МэВ зависит от энергии нейтрона. Было найдено как расчетным способом, так и в эксперименте, что при высоком пороге регистрации для второго чувствительного газового зазора преимущественно регистрируются события с ядром ⁷Li. В этом случае центр тяжести максимума в амплитудном спектре от первого газового зазора увеличивается с ростом максимальной энергии нейтронного потока. Низкая эффективность для быстрых нейтронов позволяет измерять высокую плотность и максимальную энергию потока таких нейтронов на малых расстояниях от центра источника нейтронов [7]. Однако из-за неопределенности угла вылета ядра ⁴Не или ⁷Li из ядерной реакции невозможно найти начальную энергию нейтрона.

РАЗРАБОТКА ДЕТЕКТОРА БЫСТРЫХ НЕЙТРОНОВ

Для определения начальной энергии нейтрона в ИЯИ РАН разрабатывается детектор быстрых нейтронов с ¹⁰В-конвертером. Принцип его работы основан на регистрации в ионизационной камере ядер ⁴Не и ⁷Li, образующихся в реакции

$$n + {}^{10}\text{B} \rightarrow {}^{4}\text{He} + {}^{7}\text{Li},$$

которая является основной для быстрых нейтронов. В качестве конвертора выступает тонкий слой ¹⁰В, а ионизационная камера, состоит из двух спаренных взаимно перпендикулярных катодов, между которыми располагается анод (рис. 1).

Катоды и аноды представляют собой сетку из параллельных проволок с шагом 2 мм. Зазор между анодом и каждым катодом составляет 5 мм. Внутренний объем детектора заполнен смесью газов аргона и углекислоты.

Сигналы ионизации от газовых зазоров пропорциональны частичным и полным потерям энергии ядер ⁴He и ⁷Li. Из-за малых пробегов заряженных частиц и достаточно большой толщины газового слоя для полного поглощения регистрируемого ядра, данный детектор может быть использован как $\Delta E - E$ система, и следовательно вторичные ядра могут быть идентифицированы и определены их энергии. Направление частицы (угол вылета) измеряется по срабатыванию двух пар катодных взаимно перпендикулярных проволок. Погрешность в определении угла вылета составляет ~5.7°.

МОДЕЛИРОВАНИЕ ЭФФЕКТИВНОСТИ И ЭНЕРГЕТИЧЕСКОГО РАЗРЕШЕНИЯ ДЕТЕКТОРА

Проведено Монте-Карло моделирование реакции $n + {}^{10}B \rightarrow {}^{4}He + {}^{7}Li$ в слое ${}^{10}B$ толщиной 3 мкм и регистрацией ядер ${}^{4}He$ и ${}^{7}Li$ с учетом сечения реакции и ионизационных потерь в газовых зазорах.

В табл. 1 для каждой энергии нейтрона показано сечение реакции на ¹⁰В, эффективность реакции, а также эффективность регистраций каждого из ядер ⁴Не и ⁷Li при условии, что ядро дало сигнал во втором газовом зазоре при пороге 100 кэВ. Малая эффективность регистрации частиц ⁴Не (~10⁻⁶) и частиц ⁷Li (~10⁻⁸) будет полезна для регистрации высоких потоков >10⁷ см⁻² · с⁻¹.

Регистрируя одну из заряженных частиц (зная ее энергию и угол вылета), мы можем восстановить энергию и угол вылета второй заряженной частицы решением уравнений законов сохранения энергии и импульса, а следовательно, и энергию падающего нейтрона. Выбирая высокий порог сигнала, можно подавлять регистрацию ядер ⁴Не, в этом случае для более тяжелого ядра ⁷Li детектор становится детектором полного поглощения. В зависимости от типа регистрируемой частицы, мы можем восстанавливать энергию падающего нейтрона в разных диапазонах (табл. 1).

Для определения ожидаемого энергетического разрешения по энергии нейтронов было проведено кинематическое моделирование реакции $n + {}^{10}\text{B} \rightarrow {}^{4}\text{He} + {}^{7}\text{Li}$ при разных энергиях падающих нейтронов: 3, 5 и 7 МэВ.

Энергия и угол вылета ядра ⁷Li разыгрывались с некоторыми неопределенностями, соответствую-

Рис. 1. Принцип регистрации и определения энергии нейтрона в ПЧД посредством измерения энергии и угла вылета одного из ядер ⁴Не или ⁷Li: *1* – поверхность со слоем бора-10 и проволочный катод для измерения координат начальной точки трека ядра; *2* – анод; *3* – проволочный катод для измерения координат конечной точки трека ядра.

щими энергетическому (ΔE) и угловому ($\Delta \Theta$) разрешениям детектора. Восстановление энергии падающего нейтрона проводилось решением уравнений законов сохранения энергии и импульса.

На рис. 2 показан восстановленный энергетический спектр падающего нейтрона при энергии 7 МэВ. При этом в расчетах угловое разрешение бралось $\Delta \Theta = 5.7^{\circ}$, а энергетическое разрешение $\Delta E = 3\%$.

<i>Е</i> _n , МэВ	σ, барн	Эффективность реакции	Эффективность регистрации ⁴ Не	Эффективность регистрации ⁷ Li
1	0.1797	$4.35 \cdot 10^{-6}$	$2.36 \cdot 10^{-8}$	0
2	0.4513	$1.89 \cdot 10^{-5}$	$1.07 \cdot 10^{-6}$	0
3	0.3675	$1.54 \cdot 10^{-5}$	$2.45 \cdot 10^{-6}$	0
4	0.2959	$1.24 \cdot 10^{-5}$	$3.51 \cdot 10^{-6}$	0
5	0.10369	$4.35 \cdot 10^{-6}$	$1.59 \cdot 10^{-6}$	$1.74 \cdot 10^{-10}$
6	0.1257	$5.27 \cdot 10^{-6}$	$2.14 \cdot 10^{-6}$	$8.62 \cdot 10^{-9}$
7	0.11405	$4.78\cdot 10^{-6}$	$2.07\cdot 10^{-6}$	$2.59 \cdot 10^{-8}$

Таблица 1. Результаты моделирования реакции $n + {}^{10}B \rightarrow {}^{4}He + {}^{7}Li$

Для определения энергетического разрешения по энергии нейтрона, данный спектр аппроксимировался асимметричным гауссианом и определялась полная ширина на половине максимума (FWHM) амплитуды.

На рис. З показаны различные зависимости FWHM от углового и энергетического разрешений детектора для энергии нейтрона $E_n = 3 \text{ M}$ эB

Рис. 2. Восстановленный энергетический спектр падающего нейтрона для энергии 7 МэВ при $\Delta E = 3\%$ и $\Delta \Theta = 5.7^{\circ}$.

Таблица 2. Зависимость FWHM от энергии падающего нейтрона при $\Delta E = 3\%$ и $\Delta \Theta = 5.7^{\circ}$

<i>Е</i> _{<i>n</i>} , МэВ	FWHM, MэB	ε, %
3	0.19	6.3
5	0.31	6.2
7	0.42	6

(рис. 3a и 3b) и $E_n = 7$ МэВ (рис. 3e и 3e). Для наглядности точки соединены линией.

Для проектируемого детектора погрешности в определении угла регистрируемой частицы и ее энергии будут составлять ~5.7° и 3%, соответственно. В табл. 2 показана зависимость FWHM от энергии падающего нейтрона. Энергетическое разрешение составляет порядка 6% и слабо зависит от энергии нейтронов (в области энергий 1–7 МэВ).

Рис. 3. Зависимость FWHM от углового разрешения детектора при $1 - \Delta E = 1\%$, $2 - \Delta E = 3\%$, $3 - \Delta E = 5\%$, $4 - \Delta E = 10\%$ для $a - E_n = 3$ МэВ и $e - E_n = 7$ МэВ; зависимость FWHM от энергетического разрешения детектора при $1 - \Delta \Theta = 1^\circ$, $2 - \Delta \Theta = 3^\circ$, $3 - \Delta \Theta = 5.7^\circ$ и $4 - \Delta \Theta = 10^\circ$ для $\delta - E_n = 3$ МэВ и $e - E_n = 7$ МэВ.

ЗАКЛЮЧЕНИЕ

В ИЯИ РАН разрабатывается детектор быстрых нейтронов ($E_n > 1$ МэВ) с ¹⁰В-конвертером, принцип работы которого заключается в регистрации вторичных ядер ⁴Не и ⁷Li. Моделирование показало, что разрабатываемый детектор малую эффективность регистрации (~10⁻⁷) вторичных ядер ⁴Не и ⁷Li, что будет полезно для регистрации высоких потоков >10⁷ см⁻² · с⁻¹. Энергетическое разрешение детектора по энергии нейтронов оценивается ~6% и слабо зависит от энергии нейтронов (в области энергий 1–7 МэВ). В зависимости от типа регистрируемой частицы, можно восстанавливать энергию падающего нейтрона в двух диапазонах (>1 МэВ при регистрации ⁴Не и >5 МэВ при регистрации ⁷Li).

СПИСОК ЛИТЕРАТУРЫ

- Tranquada J.M., Xu Guangyong, Zaliznyak I.A. // J. Magn. Magn. Mater. 2014. V. 350. P. 148.
- Calvo-Dahlborg M., Popel P.S., Kramer M.J. et al. // J. Alloys Comp. 2013. V. 550. P. 9.
- 3. Avdeev M.V., Balasoiu M., Aksenov V.L. et al. // J. Magn. Magn. Mater. 2004. V. 270. P. 371.
- Fried J., Harder J.A., Mahler G.J. et al. // Nucl. Instrum. Meth. Phys. Res. A. 2002. V. 478. P. 415.
- Nasir R., Aziz F., Mirza S.M. et al. // Nucl. Eng. Technol. 2018. V. 50. No. 3. P. 439.
- Potashev S., Burmistrov Yu., Drachev A. et al. // J. Phys. Conf. Ser. 2017. V. 798. Art. No. 012160.
- 7. Potashev S., Drachev A., Burmistrov Yu. et al. // EPJ Web Conf. 2020. V. 231. Art. No. 05010.

Efficiency and energy resolution calculation under developing of fast neutron detector with ¹⁰B-converter

A. A. Kasparov^{a, *}, S. I. Potashev^a, A. A. Afonin^a, Yu. M. Burmistrov^a, A. I. Drachev^a

^aInstitute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia *e-mail: kasparov200191@gmail.com

Under developing new position-sensitive ionization detector of fast neutrons with energies above 1 MeV events of ⁷Li and ⁴He nucleus emission from ¹⁰B layer is simulated. The expected relative resolution of the neutron energy is ~6% and the detector efficiency in the energy range from 1 to 7 MeV is estimated as ~10⁻⁷. Thus, it becomes possible to determine the energy and coordinates of the neutron without measuring the time of flight.