УЛК 539.143.5

НОВЫЙ АЛГОРИТМ ВЫЧИСЛЕНИЯ ПРОТОННЫХ, НЕЙТРОННЫХ И ЗАРЯДОВЫХ ПЛОТНОСТЕЙ В ЯДРАХ: СРАВНЕНИЕ С ЭКСПЕРИМЕНТАЛЬНЫМИ ДАННЫМИ

© 2021 г. О. М. Сухарева¹, М. В. Чушнякова¹, И. И. Гончар², А. А. Климочкина^{3, *}

¹Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет", Омск, Россия

²Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный университет путей сообщения", Омск, Россия

³Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова", Москва, Россия

> *E-mail: klimann16@gmail.com Поступила в редакцию 20.11.2020 г. После доработки 28.12.2020 г. Принята к публикации 27.01.2021 г.

Плотность нуклонов — фундаментальная величина в ядерной физике. Она, в частности, является важным ингредиентом в модели двойной свертки при расчете сечений слияния ядер. Предложен упрощенный способ расчета этой плотности, основанный на микроскопических плотностях для шести реперных ядер. В отличие от микроскопических расчетов, предложенный метод не является трудоемким и может быть легко использован экспериментаторами.

DOI: 10.31857/S0367676521050239

введение

Коллективное ядерное движение большой амплитуды, примерами которого являются слияние [1-5], деление [6-8] и квазиделение [3, 9, 10], представляет большой интерес как с экспериментальной, так и с теоретической точек зрения. В результате соответствующих экспериментов были синтезированы ядра с зарядовыми числами Z от 104 до 118 [11, 12].

В настоящей работе внимание сконцентрировано на процессе захвата ядер в орбитальное движение при их столкновении. Если произведение зарядовых чисел сталкивающихся ядер Z_1 и Z_2 не превосходит 1300, захват завершается слиянием [13], далее в тексте используется только этот термин.

Существует несколько методов для расчета сечений слияния. Метод Хартри—Фока с зависимостью от времени [14—16], являясь одним из наиболее реалистичных, реализуется с существенными ограничениями и требует значительных затрат компьютерных ресурсов. Менее требовательными к вычислительным мощностям методами являются, например, метод связанных каналов [17—19] или траекторный анализ с учетом диссипации [20—22].

Важной частью любого из методов является процедура нахождения энергии сильного ядро-

ядерного взаимодействия (СиЯВ) $U_n(R)$. Для расчета энергии СиЯВ часто используется параметризация потенциала формулой Вудса—Саксона (недостатком которой является привязка к экспериментальным данным: три независимых параметра этой формулы — глубина, радиус и диффузность — варьируются так, чтобы расчет воспроизводил экспериментальные сечения слияния при надбарьерных энергиях). Также могут быть использованы потенциал proximity и другие феноменологические потенциалы. В настоящее время часто предпочтение отдается более теоретически обоснованному методу двойной свертки (double folding) [23—27]. В этом методе энергия СиЯВ $U_n(R)$ вычисляется следующим образом:

$$U_{n}(R) = \int d\vec{r}_{1} \int d\vec{r}_{2} \rho_{A1}(r_{1}) \nu_{NN} (|\vec{R} - \vec{r}_{2} + \vec{r}_{1}|) \rho_{A2}(r_{2}). (1)$$

Здесь \vec{r}_1 и \vec{r}_2 — радиус-векторы двух взаимодействующих точек (ядра-снаряда и ядра-мишени соответственно), \vec{R} — вектор, соединяющий центры масс ядер, $\rho_{A1}(r_1)$ и $\rho_{A2}(r_2)$ — нуклонные плотности ядер, V_{NN} — эффективный нуклон-нуклонный потенциал. В настоящей работе рассмотрены сферические сталкивающиеся ядра.

Оценки материальной плотности ядер в значительной степени опираются на эксперимен-

тальную информацию о зарядовых распределениях плотности [28—30]. В настоящее время эксперименты по измерению непосредственно нуклонной плотности немногочисленны [31—33] и имеют большие погрешности.

Теоретическое описание нуклонных плотностей ядер осуществляется во многих моделях, например в релятивистской модели среднего поля [34], в подходе Хартри—Фока [35—37]. Однако микроскопические расчеты весьма трудоемки. Расчет нуклонной плотности в одночастичном приближении с дисперсионными оптическими потенциалами является менее ресурсоемким [38, 39]. Наиболее популярной аппроксимацией радиальной зависимости плотности протонов $\rho_Z(r)$ и нейтронов $\rho_N(r)$ является распределение Ферми [25, 27, 40, 41]:

$$\rho_{ZF}(r) = \rho_{ZC} \left[1 + \exp\left\{ \left(r - r_{Z0} A^{1/3} \right) / a_Z \right\} \right]^{-1},$$
(2)

$$\rho_{NF}(r) = \rho_{NC} \left[1 + \exp\left\{ \left(r - r_{N0} A^{1/3} \right) / a_N \right\} \right]^{-1}.$$
 (3)

В настоящей статье изложен упрощенный алгоритм расчета плотности нейтронов $\rho_N(r)$ и протонов $\rho_Z(r)$, основанный на известной плотности электрического заряда в ядре. Этот алгоритм может быть полезен экспериментаторам. Основа предложенного алгоритма — линейная интерполяция параметров плотности нуклонов для произвольного сферического ядра между определенными в этой работе параметрами для шести ядер, выбранных в качестве реперных.

АППРОКСИМАЦИЯ ПЛОТНОСТЕЙ ПРОФИЛЕМ ФЕРМИ С ЭКСПОНЕНЦИАЛЬНЫМ ХВОСТОМ (FE-АППРОКСИМАЦИЯ)

На первом этапе мы ставим своей целью аппроксимировать протонную $\rho_{ZSKX}(r)$ и нейтронную $\rho_{NSKX}(r)$ плотности реперных сферических ядер ¹²C, ¹⁶O, ³⁶S, ⁹²Zr, ¹⁴⁴Sm, ²⁰⁴Pb, полученные с помощью метода Хартри—Фока с набором параметров SKX (HF SKX) в работе [36], фермиевскими функциями (2) и (3) соответственно.

Алгоритм нахождения параметров ρ_{ZC} , r_{Z0} , a_Z (ρ_{NC}, r_{N0}, a_N) опишем на примере плотности протонов.

В массиве значений протонной плотности $\rho_{ZSKX}(r)$ мы находим максимальное значение (оно должно быть близким по значению к $\rho_{ZSKX}(0)$, но не обязательно совпадает с ним, см., например, рис. 1a, 1e и рис. 2a). Это значение принимается за начальное значение ρ_{ZCF} .

Далее определяется расстояние от центра ядра R_Z , на котором $\rho_{ZSKX}\left(R_Z\right) \approx \rho_{ZCF}/2$ (радиус половинной плотности ядра). Затем численно находится производная $d\rho_{ZSKX}/dr$ при $r=R_Z$. Легко показать, что

$$\frac{d\rho_{ZSKX}}{dr}(R_Z) \approx -\frac{\rho_{ZCF}}{4a_Z}.$$
 (4)

Соотношение (4) используется для определения диффузности a_Z . Знаки приближенного, а не точного равенства обусловлены тем, что расчеты проводятся на сетке. Из связи $R_Z = r_{Z0}A^{1/3}$ следует выразить r_{Z0} . С полученными параметрами ρ_{ZCF} , r_{Z0} , a_Z вычисляется протонная плотность $\rho_{ZF}(r)$ по формуле (2) в диапазоне от 0 до 10 фм с шагом 0.1 фм. Полученное распределение должно удовлетворять условию нормировки

$$Z = \int d\vec{r} \rho_{ZF}(r), \tag{5}$$

однако на первом этапе, поскольку в качестве ρ_{ZCF} выбрано максимальное значение плотности, правая часть (5) больше левой.

Далее действия, описанные в предыдущем абзаце, повторяются с постепенным уменьшением значения параметра ρ_{ZCF} на 0.1% на каждом шаге. Окончательные значения параметров ρ_{ZCF} , r_{Z0} и a_Z соответствуют минимальной разности между правой и левой частями формулы (5). Такая же процедура применяется для нахождения параметров плотности нейтронов.

На рис. 1 и рис. 2 протонные и нейтронные плотности, полученные в результате аппроксимации фермиевской функцией (F-аппроксимации), сравниваются с плотностями, рассчитанными по методу HF SKX (HF SKX-плотностями). Согласие получается довольно хорошим; исключением является область, отдаленная от центра (область "хвостов" плотностей): здесь F-аппроксимация переоценивает HF SKX-плотности. Это неизбежно должно сказываться на величине энергии СиЯВ $U_n(R)$ сталкивающихся ядер (см. табл. 4).

Для улучшения результатов расчета в хвостовой области предложена модифицированная аппроксимация плотности экспоненциальной функцией при $r \ge r_E = R_Z + \Delta R$ ($r \ge r_E = R_N + \Delta R$), в соответствии с которой диффузность a_E убывает с расстоянием по следующему закону:

$$a_E(r) = a \left\{ 1 - \delta \cdot (r - r_E)^x \right\}. \tag{6}$$

Соответственно, плотности имеют вид:

$$\rho_{FE}(r) = \begin{cases} \rho_F(r), & r < r_E \\ \rho_F(r_E) exp \left[\frac{r_E - r}{a_E(r)} \right], & r \ge r_E \end{cases}$$
 (7)

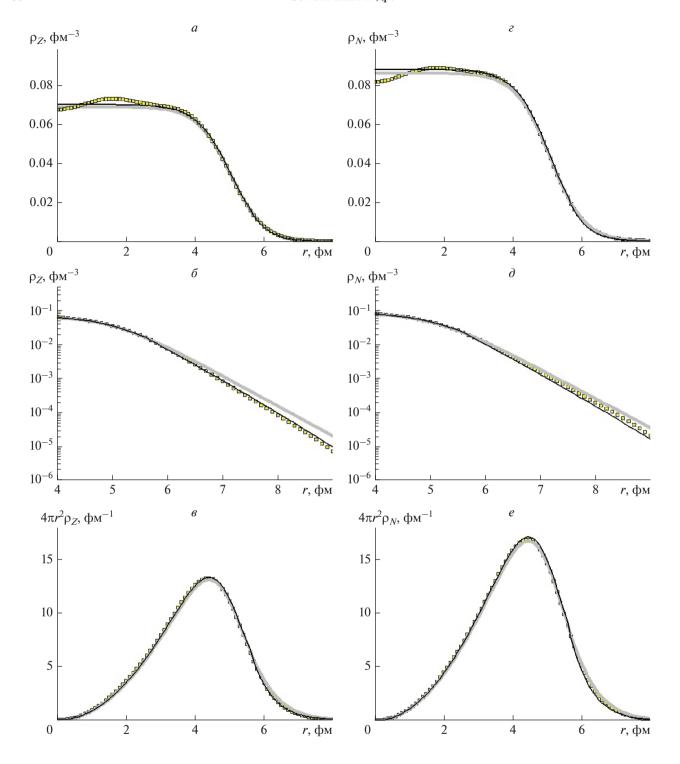


Рис. 1. Зависимость протонной $\rho_Z(r)$ (a, δ, s) и нейтронной $\rho_N(r)$ (ϵ, ∂, e) плотностей от расстояния от центра ядра для 92 Zr в линейном (a, ϵ) и логарифмическом (δ, ∂) масштабах, а также с множителем $4\pi r^2$ (s, e). Квадраты — микроскопический расчет HF SKX, толстые серые линии — F-аппроксимация, тонкие черные линии — результаты расчета по FE-алгоритму.

Аппроксимация плотностей $\rho_{ZSKX}(r)$, $\rho_{NSKX}(r)$ формулами (6), (7) показана на рис. 1 и 2. Теперь согласие с HF SKX-плотностями в хвостах на-

много лучше. Оно достигается с параметрами δ = $0.02 \, \text{фм}^{-x} \, \text{и} \, \Delta R = 0.5 \, \text{фм}$ для всех реперных ядер. Значения параметра x оказываются одинаковы-

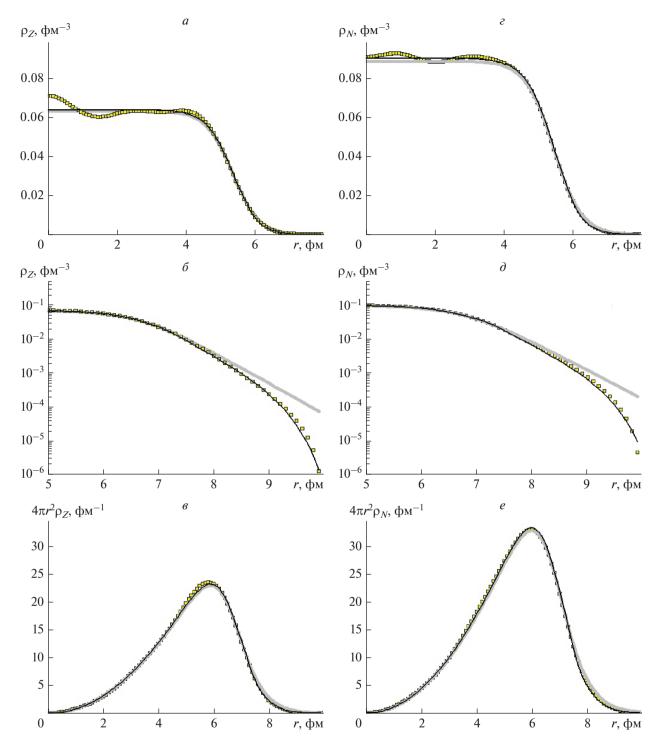


Рис. 2. То же, что на рис. 1, но для ядра 204 Pb.

ми для протонов и нейтронов для одного ядра, но различными для разных ядер (см. табл. 1). Следует отметить, что модифицированная аппроксимация (FE-аппроксимация) требует последующей дополнительной перенормировки: величины плотностей на малых расстояниях (плато) на рис. 1a, 1e и 2a, 2e не совпадают. Обозначим пара-

метры, полученные в результате этой перенормировки, ρ_{ZCFE} и ρ_{NCFE} . Диффузности a_Z , a_N и параметры r_{Z0} , r_{N0} при этом не изменяются.

Значения параметров ρ_{ZCFE} , a_Z , r_{Z0} (ρ_{NCFE} , a_N , r_{N0}), полученные для реперных ядер, приведены в табл. 1. Обращает на себя внимание, что эти зна-

Таблица 1. Параметры плотностей протонов и нейтронов для реперных ядер, а также относительные разности
ε_{Z} и ε_{N} (см. формулу (8)). Количество значащих цифр соответствует 0.1%-ному изменению параметров ρ_{ZCF} и
ρ_{NCF} (см. текст перед формулой (4))

Ядро	¹² C	¹⁶ O	³⁶ S	⁹² Zr	¹⁴⁴ Sm	²⁰⁴ Pb
ρ_{ZCFE} , ϕM^{-3}	0.08277	0.07640	0.07205	0.06905	0.06679	0.06281
r_{Z0} , фм	1.006	1.061	1.074	1.111	1.131	1.133
a_Z , фм	0.4715	0.4706	0.4863	0.4916	0.4766	0.4748
$\epsilon_Z,\%$	4.8	3.0	6.1	4.5	3.9	3.0
$x_Z = x_N$	0	0	0.5	1	2	3
ρ_{NCFE} , ϕM^{-3}	0.08416	0.07766	0.08462	0.08624	0.08531	0.08843
r_{N0} , фм	1.001	1.056	1.096	1.125	1.142	1.152
a_N , фм	0.4687	0.4673	0.5009	0.5023	0.4971	0.5095
$\epsilon_N,\%$	5.3	3.5	4.0	2.9	2.3	2.6

чения различны для протонов и нейтронов одного и того же ядра. Также в табл. 1 указаны относительные разности

$$\varepsilon_{Z(N)} = \frac{1}{Q} \sum_{i=1}^{Q} \left| 1 - \frac{\rho_{Z(N)FE}(r_i)}{\rho_{Z(N)SKX}(r_i)} \right|, \tag{8}$$

характеризующие степень согласия аппроксимирующей FE-плотности с аппроксимируемой HF SKX-плотностью.

Для нахождения нуклонных плотностей произвольных сферических ядер необходимо произвести линейную интерполяцию параметров r_{Z0} (r_{N0}), a_Z (a_N) по зарядовому числу ядра между соответствующими узловыми значениями, приведенными в табл. 1. После того как диффузности и параметры радиусов найдены, значения ρ_{ZCFE} (ρ_{NCFE}) определяются из условий нормировки.

ЗАРЯДОВАЯ ПЛОТНОСТЬ В ЯДРАХ

Зарядовая плотность в сферическом ядре, $\rho_q(r)$, как функция расстояния r от центра ядра вычисляется с помощью конволюции [42]

$$\rho_{q}(r) = \int d\vec{r}_{p} \rho_{Z}(r_{p}) f_{p}(s_{p}) + \int d\vec{r}_{n} \rho_{N}(r_{n}) f_{n}(s_{n}). \quad (9)$$

Здесь $s_p = |\vec{r} - \vec{r}_p|$, $s_n = |\vec{r} - \vec{r}_n|$; \vec{r}_p (\vec{r}_n) означает радиус-вектор центра масс протона (нейтрона); $f_p(s_p)$ ($f_n(s_n)$) — распределение заряда внутри протона (нейтрона).

Для распределения заряда внутри протона в настоящей работе используется гауссово распределение [42]

$$f_p(s_p) = \frac{1}{\pi^{3/2} \sigma_G^3} \exp\left(\frac{-s_p^2}{\sigma_G^2}\right),$$
 (10)

где параметр $\sigma_G = \sqrt{2}R_{qp}/\sqrt{3}$, а R_{qp} — экспериментальное значение среднеквадратичного зарядового радиуса протона, $R_{qp} = 0.8791$ фм [29].

Для зарядового распределения внутри нейтрона мы используем следующую аппроксимацию:

$$f_n(s_n) = \frac{\langle R_n^2 \rangle}{192\pi\sigma^6} (s_n - 3\sigma_n) \exp\left(\frac{-s_n}{\sigma_n}\right). \tag{11}$$

Здесь $\langle R_n^2 \rangle = -0.1149 \text{ фм}^2$ — экспериментальное среднее значение квадрата зарядового радиуса нейтрона [29], а параметр $\sigma_n = 0.22 \text{ фм}$.

СРАВНЕНИЕ С ЭКСПЕРИМЕНТОМ

Зарядовые плотности $\rho_q(r)$, рассчитанные с помощью аппроксимированных протонных $\rho_Z(r)$ и нейтронных $\rho_N(r)$ плотностей, сравниваются с экспериментальными на рис. 3. При этих расчетах применен описанный выше FE-алгоритм, согласие получается довольно хорошим.

Количественное сравнение расчетных среднеквадратичных зарядовых радиусов r_{msqFE} с экспериментальными r_{msqexp} для нескольких сферических ядер, не являющихся реперными, проведено

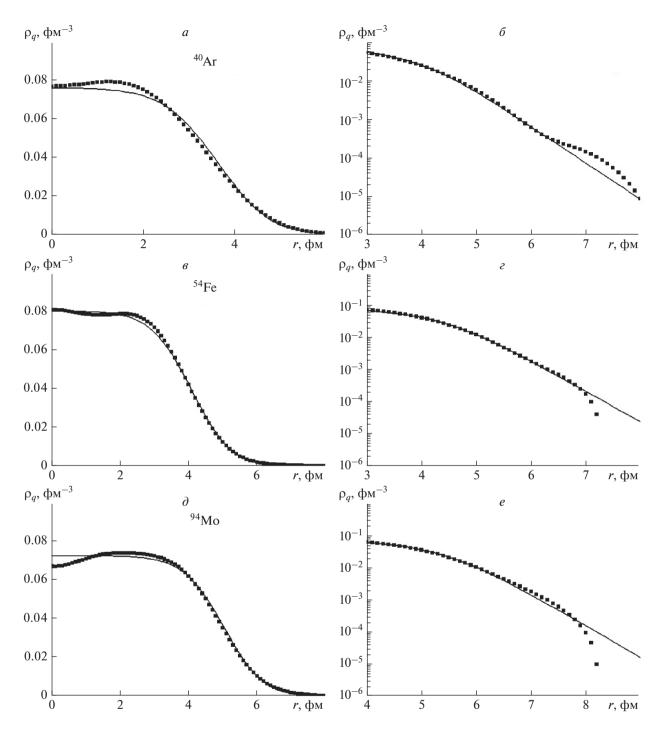


Рис. 3. Зависимость зарядовой плотности $\rho_q(r)$ от расстояния от центра ядра для ядер 40 Ar (a, δ) , 54 Fe (s, ϵ) , 94 Mo (∂, e) , в линейном (a, s, ∂) и логарифмическом (δ, ϵ, e) масштабах. Квадраты — экспериментальные данные [28], тонкие черные линии — результаты расчета с использованием протонных и нейтронных плотностей, полученных с помощью интерполяции по FE-алгоритму.

в табл. 2. Сравнение радиусов также удобно проиллюстрировать с помощью относительной разности

$$\xi_{rmsq} = \frac{r_{msqFE}}{r_{msqexp}} - 1. \tag{12}$$

Из табл. 2 видно, что относительная разность между экспериментальными и расчетными среднеквадратичными зарядовыми радиусами не превышает 2%, а в большинстве случаев составляет менее 1%.

Таблица 2. Среднеквадратичные зарядовые экспериментальные r_{msqexp} [29] и расчетные r_{msqFE} радиусы, их абсолютные Δr_{msqexp} и относительные ϵ_{exp} погрешности, а также относительные разности ξ_{rmsq} (см. формулу (12)) для ряда изотопов

Ядро	⁵⁸ Ni	¹¹⁶ Sn	¹¹² Sn	⁴⁰ Ca	⁵⁰ Ti	90 Zr	⁹⁶ Zr
r_{msqexp} , фм	3.7748	4.6266	4.5943	3.4764	3.5704	4.2696	4.3498
Δr_{msqexp} , фм	0.014	0.015	0.018	0.01	0.016	0.008	0.011
ε_{exp} , %	0.37	0.32	0.39	0.29	0.45	0.19	0.25
r_{msqFE} , Φ M	3.7757	4.6126	4.5656	3.4128	3.6055	4.3148	4.3128
ξ_{rmsq} , %	0.024	-0.30	-0.62	-1.8	0.98	1.1	-0.85

Таблица 3. Высоты кулоновских барьеров для рассматриваемых реакций: приближенная оценка B_Z (см. формулу (13)); расчетное значение U_{B0FE} ; экспериментальное значение U_{B0exp} ; относительная разность ξ_U (см. формулу (14))

№ пп	Реакция	B_Z , МэВ	U_{BOFE} , МэВ	U_{B0exp} , МэВ	Источник	$\xi_U,\%$
1	$^{12}C + ^{12}C$	7.86	5.74	5.8 ± 0.3	[44]	-1.0
2	$^{12}\text{C} + ^{16}\text{O}$	9.98	7.48	7.7 ± 0.4	[44]	-2.9
3	$^{12}C + ^{92}Zr$	35.27	31.49	32.31	[13]	-2.5
4	$^{12}C + ^{144}Sm$	49.40	45.96	_	_	_
5	$^{12}\text{C} + ^{208}\text{Pb}$	59.89	57.36	57.0 ± 0.4	[45]	0.63
6	$^{12}\text{C} + ^{204}\text{Pb}$	60.17	57.74	57.55	[13]	0.33
7	$^{16}O + ^{58}Ni$	35.05	30.73	31.67	[13]	-3.0
8	$^{16}O + ^{92}Zr$	45.49	41.21	41.96	[13]	-1.8
9	$^{16}O + ^{116}Sn$	54.08	50.02	50.96	[13]	-1.8
10	$^{16}O + ^{112}Sn$	54.49	50.43	51.02	[13]	-1.2
11	$^{16}O + ^{144}Sm$	63.91	60.23	61.03	[13]	-1.3
12	$^{16}\text{O} + ^{208}\text{Pb}$	77.68	75.23	74.52	[13]	0.95
13	$^{16}O + ^{204}Pb$	78.03	75.30	74.9	[46]	0.53
14	$^{36}S + ^{208}Pb$	142.19	143.15	140.4 ± 1.4	[47]	2.0
15	$^{36}S + ^{204}Pb$	142.78	143.68	143.1 ± 0.2	[48]	0.41
16	$^{36}S + ^{144}Sm$	116.11	114.59	_	_	_
17	40 Ca + 50 Ti	61.94	57.56	58.21	[13]	-1.1
18	$^{36}S + ^{90}Zr$	82.23	78.34	77.97	[13]	0.47
19	$^{36}S + ^{96}Zr$	81.21	77.68	75.61	[13]	2.7
20	40 Ca + 90 Zr	101.25	97.91	96.88	[13]	1.1
21	40 Ca + 96 Zr	100.01	97.08	94.59	[13]	2.6

Применим теперь нуклонные плотности, полученные с помощью разработанного нами FE-алгоритма, для расчета энергии СиЯВ $U_n(R)$ (1) и кулоновских барьеров. В расчетах энергии СиЯВ использован эффективный нуклон-нуклонный потенциал v_{NN} M3Y Paris с плотностной зависимостью CDM3Y1 (см. табл. 1 и формулу (6) в ра-

боте [43]). Кулоновская составляющая взаимодействия ядер вычислена также методом двойной свертки с потенциалом кулоновского отталкивания точечных зарядов (см. формулу (5) в [43]).

Результаты таких расчетов для ряда реакций представлены в табл. 3. В ней приведены следующие величины: высота расчетного барьера $U_{\it BOFE}$

№ реакции в табл. 3	Реакция	Потенциал	Метод нахождения плотности	U_{B0} , МэВ	$\frac{U_{B0SKX}}{U_{B0F(E)}} - 1, \%$
	$^{12}C + ^{92}Zr$	M3Y Paris	F	31.13	2.14
3		M3Y Paris	FE	31.49	1.01
		M3Y Paris	HF SKX	31.81	
	$^{16}O + ^{204}Pb$	M3Y Paris	F	74.52	1.92
13		M3Y Paris	FE	75.30	0.89
		M3Y Paris	HF SKX	75.98	
	¹⁶ O + ¹⁴⁴ Sm	M3Y Paris	F	59.56	1.86
11		M3Y Paris	FE	60.23	0.76
11		M3Y Paris	HF SKX	60.69	
		M3Y Reid	F	59.56	

Таблица 4. Высота расчетного кулоновского барьера U_{B0} для нулевого углового момента в ряде реакций для F- и FE-аппроксимаций в сравнении с высотами, вычисленными с HF SKX-плотностями

для нулевого углового момента; высота экспериментального барьера U_{B0exp} . Также указаны приближенные значения высот барьеров B_Z , определенные по оценочной формуле

$$B_Z = Z_P Z_T / (A_P^{1/3} + A_T^{1/3}) \text{ M} \ni \text{B}.$$
 (13)

Относительная разность высот расчетного и экспериментального барьеров

$$\xi_U = \frac{U_{B0FE}}{U_{B0exp}} - 1 \tag{14}$$

не превышает 3%.

В табл. 4 приведены результаты расчетов U_{B0} для трех реакций с учетом экспоненциального хвоста при аппроксимации плотностей и без него. Из этих результатов видно, что экспоненциальная поправка является значимой: высоты барьеров отличаются на 1.1%. Заметим, что при замене версии Paris потенциала нуклон-нуклонного взаимодействия M3Y на версию Reid высота барьера меняется менее чем на 0.017%.

ЗАКЛЮЧЕНИЕ

Зависимость плотности нуклонов в сферических ядрах от расстояния от центра ядра требуется для вычисления различных характеристик самих ядер и их взаимодействия. Расчет этих плотностей в микроскопических подходах весьма трудоемок. В литературе часто эти плотности аппроксимируют распределением Ферми. Однако при этом остается значительный произвол в параметрах этого профиля (радиус половинной плотности $r_0 A^{1/3}$ и диффузность a).

В настоящей работе мы аппроксимировали результаты расчетов нейтронных и протонных плотностей, полученных в микроскопическом подходе

Хартри—Фока с SKX-параметрами, формулой Ферми для шести реперных ядер (F-аппроксимация, см. формулы (2), (3)). Проведенные расчеты показывают, что на периферии ядер (в хвостовой области) значения плотностей, полученные таким образом, существенно превышают плотности, вычисленные методом Хартри—Фока. Поэтому для этой области в настоящей работе предложена модернизированная экспоненциальная зависимость, использующая переменную диффузность. Такой FE-алгоритм позволил гораздо лучше воспроизвести микроскопические нуклонные плотности.

Далее был проведен расчет зарядовых плотностей в реперных ядрах с использованием нуклонных FE-плотностей. Оказалось, что рассчитанные таким образом зарядовые плотности хорошо согласуются с экспериментальными. Параметры распределения Ферми, r_0 и a, для других сферических ядер находятся с помощью линейной интерполяции. В работе показано, что для многих сферических ядер предложенный подход обеспечивает отличие расчетного среднеквадратичного зарядового радиуса от экспериментального менее 2%.

Кроме того, разработанный FE-алгоритм применен для расчета высот кулоновских барьеров для ряда реакций. Расчетные величины высот оказались в хорошем согласии с экспериментальными. Отличие не превосходит 3%, а более чем в половине рассмотренных случаев укладывается и в 2%.

Разработанный алгоритм устраняет неопределенности в параметрах формулы Ферми для протонных и нейтронных плотностей и может быть полезен другим исследователям для быстрых и достаточно точных расчетов.

СПИСОК ЛИТЕРАТУРЫ

1. Berriman A.C., Hinde D.J., Dasgupta M. et al. // Nature. 2001. V. 413. P. 144.

- Dasgupta M., Hinde D.J., Rowley N., Stefanini A.M. // Annu. Rev. Nucl. Part. Sci. 1998. V. 48. P. 401.
- 3. Кузякин Р.А., Саргсян В.В., Адамян Г.Г., Антоненко Н.В. // ЭЧАЯ. 2017. Т. 48. С. 21.
- Hudan S., deSouza R.T., Umar A.S. et al. // Phys. Rev. C. 2020. V. 101. Art. No. 61601.
- Montagnoli G., Stefanini A.M., Jiang C.L. et al. // Phys. Rev. C. 2020. V. 101. Art. No. 44608.
- Fröbrich P., Gontchar I.I. // Phys. Rep. 1998. V. 292. P. 131.
- Schunck N., Robledo L.M. // Reports Prog. Phys. 2016. V. 79. Art. No. 116301.
- 8. *Usang M.D., Ivanyuk F.A., Ishizuka C., Chiba S. //* Phys. Rev. C. 2017. V. 96. Art. No. 064617.
- 9. Schmitt C., Mazurek K., Nadtochy P.N. // Phys. Rev. C. 2019. V. 100. Art. No. 64606.
- 10. *Hammerton K., Morrissey D.J., Kohley Z. et al.* // Phys. Rev. C. 2019. V. 99. Art. No. 54621.
- 11. *Oganessian Y.T., Utyonkov V.K.* // Reports Prog. Phys. 2015. V. 78. Art. No. 36301.
- Armbruster P., Münzenberg G. // Eur. Phys. J. H. 2012.
 V. 37. P. 237.
- Newton J.O., Butt R.D., Dasgupta M. et al. // Phys. Rev. C. 2004. V. 70. Art. No. 024605.
- 14. *Yilmaz B., Ayik S., Lacroix D., Yilmaz O.* // Phys. Rev. C. 2014. V. 90. Art. No. 24613.
- Maruhn J.A., Reinhard P.-G., Stevenson P.D., Strayer M.R. // Phys. Rev. C. 2006. V. 74. Art. No. 27601.
- 16. Benrabia K., Medjadi D.E., Imadalou M., Quentin P. // Phys. Rev. C. 2017. V. 96. Art. No. 34320.
- Hagino K., Rowley N., Kruppa A.T. // Comp. Phys. Commun. 1999. V. 123. P. 143.
- 18. Загребаев В.И., Самарин В.В. // ЯФ. 2004. Т. 67. С. 1.
- Jacobs P.M., Smilansky U. // Phys. Lett. B. 1983. V. 127.
 P. 313.
- Chushnyakova M.V., Gontchar I.I. // J. Phys. G. 2013.
 V. 40. Art. No. 095108.
- Chushnyakova M.V., Bhuyan M., Gontchar I.I., Khmyrova N.A. // Nucl. Phys. A. 2020. V. 994. Art. No. 121657.
- 22. Chushnyakova M.V., Gontchar I.I., Khmyrova N.A. // J. Phys. G. 2021. V. 48. Art. No. 015101.
- Ismail M., Ramadan K.A. // J. Phys. G. 2000. V. 26. P. 1621.
- 24. Satchler G.R., Love W.G. // Phys. Rep. 1979. V. 55. P. 183.

- Adamian G.G., Antonenko N.V., Jolos R.V. et al. // Int. J. Mod. Phys. E. 1996. V. 5. P. 191.
- 26. *Khoa D.T.* // Phys. Rev. C. 2001. V. 63. Art. № 034007.
- 27. Загребаев В.И., Карпов А.В., Аритомо Я. и др. // ЭЧАЯ. 2007. Т. 38. С. 893.
- 28. De Vries H., De Jager C.W., De Vries C. // Atom. Data Nucl. Data Tables. 1987. V. 36. P. 495.
- Angeli I. // Atom. Data Nucl. Data Tables. 2004. V. 87.
 P. 185.
- Cooper T., Bertozzi W., Heisenberg J. et al. // Phys. Rev. C. 1976. V. 13. P. 1083.
- Sakaguchi H., Zenihiro J. // Prog. Part. Nucl. Phys. 2017. V. 97. P. 1
- 32. *Terashima S., Sakaguchi H., Takeda H. et al.* // Phys. Rev. C. 2008. V. 77. Art. No. 024317.
- 33. *Miller Gerald A.* // Phys. Rev. C. 2019. V. 100. Art. No. 044608.
- 34. Negele J.W. // Rev. Mod. Phys. 1982. V. 54. P. 913.
- 35. Gontchar I.I., Bhattacharya R., Chushnyakova M.V. // Phys. Rev. C. 2014. V. 89. Art. No. 034601.
- 36. Chushnyakova M.V., Bhattacharya R., Gontchar I.I. // Phys. Rev. C. 2014. V. 90. Art. No. 017603.
- 37. Bhattacharya R. // Nucl. Phys. A. 2013. V. 913. P. 1.
- 38. Bespalova O.V., Ermakova T.A., Klimochkina A.A., Spasskaya T.I. // Phys. Atom. Nucl. 2017. V. 80. P. 912.
- 39. Bespalova O.V., Fedorov N.A., Klimochkina A.A. et al. // Eur. Phys. J. A. 2018. V. 54. P. 2.
- Chushnyakova M.V., Gontchar I.I. // Phys. Rev. C. 2013. V. 87. Art. No. 014614.
- 41. Gontchar I.I., Hinde D.J., Dasgupta M. et al. // Phys. Rev. C. 2006. V. 73. Art. No. 034610.
- 42. Łojewski Z., Nerlo-Pomorska B., Pomorski K., Dudek J. // Phys. Rev. C. 1995. V. 51. P. 601.
- 43. Gontchar I.I., Hinde D.J., Dasgupta M., Newton J.O. // Phys. Rev. C. 2004. V. 69. Art. No. 024610.
- 44. Kovar D.G., Geesaman D.F., Braid T.H. et al. // Phys. Rev. C. 1979. V. 20. P. 1305.
- 45. Mukherjee A., Hinde D.J., Dasgupta M. et al. // Phys. Rev. C. 2007. V. 75. Art. No. 044608.
- 46. Dasgupta M., Hinde D.J., Diaz-Torres A. et al. // Phys. Rev. Lett. 2007. V. 99. Art. No. 192701.
- 47. *Yanez R., Loveland W., Vinodkumar A.M. et al.* // Phys. Rev. C. 2010. V. 82. Art. No. 054615.
- 48. *Hinde D.J., Dasgupta M., Herrald N. et al.* // Phys. Rev. C. 2007. V. 75. Art. No. 054603.

A novel algorithm for evaluating the proton, neutron, and charge densities in nuclei: comparison with experimental data

O. M. Sukhareva^a, M. V. Chushnyakova^a, I. I. Gontchar^b, A. A. Klimochkina^{c, *}

^aOmsk State Technical University, Omsk, 644050 Russia ^bOmsk State Transport University, Omsk, 644046 Russia ^cMoscow State University, Moscow, 119991 Russia *e-mail: klimann 16@gmail.com

The nucleon density is a fundamental value in nuclear physics. In particular, while calculating fusion cross-sections of nuclei, it is a significant ingredient of the double-folding model. We propose a simplified way of calculating this density based on the microscopic densities of six benchmarking nuclei. In contrast to microscopic calculations, the proposed method is not time-consuming and can easily be used by experimentalists.