УЛК 669.539.2

КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ ХИМИЧЕСКОЙ НЕОДНОРОДНОСТИ В КОНСТРУКЦИОННЫХ СТАЛЯХ, ПОЛУЧЕННЫХ СОВМЕЩЕНИЕМ ПРОКАТКИ С НЕПРЕРЫВНЫМ ЛИТЬЕМ (ПО ТЕХНОЛОГИИ "STRIP-CASTING")

© 2021 г. В. П. Филиппова^{1, *}, Е. Н. Блинова¹, О. П. Жуков¹, Е. В. Пименов¹, А. А. Томчук^{1, 2, 3}

 1 Φ едеральное государственное унитарное предприятие

*e-mail: varia.filippova@yandex.ru Поступила в редакцию 25.01.2021 г. После доработки 25.02.2021 г. Принята к публикации 29.03.2021 г.

Методом компьютерного моделирования, основанным на термодинамических расчетах, показано, что температура Ac_3 , в зависимости от химического состава, может меняться на десятки градусов. Таким образом, химическая неоднородность в макрообъемах проката непрерывнолитых сталей может влиять на механические свойства. Методами Оже-спектроскопии и механических испытаний упрочненного проката двух сталей массового назначения (09Г2С и Ст3) установлено, что послойное изменение предела текучести в стали Ct3 связано с неоднородным составом твердого раствора, а в стали $09\Gamma2C-c$ неоднородностью фазового состава.

DOI: 10.31857/S0367676521070073

ВВЕДЕНИЕ

Совмещение процессов непрерывного литья и прокатки в одном неразрывном потоке относится к технологии "стрип-кастинга". При этом используют литейно-прокатные агрегаты, в которых слиток на выходе из кристаллизатора, не подвергаясь разрезке, проходит печь, где, до поступления в валки прокатного стан, выравнивается температура по сечению. Таким образом, осуществляется процесс кристаллизации и прокатки бесконечного слитка, т.е. непрерывное производство проката из жидкого металла. Основная трудность в развитии этого процесса состоит в относительно низкой скорости выхода слитка из кристаллизатора (1-6 м/мин), что не позволяет в полной мере использовать производственные возможности непрерывного прокатного стана.

Технический прогресс в области "стрип-кастинга" характеризуется, в первую очередь, повышением качества металла, которое обеспечивало бы его технологичность и наиболее эффективное использование прокатываемых изделий потребителем. С этой целью прокатываемому изделию придается возможно более рациональная форма, способствующая снижению его массы, расширяется производство экономичных профилей проката, повышается точность его размеров, улучшаются прочностные и др. свойства металла, на его поверхность наносятся эффективные защитные покрытия. Одновременно снижается стоимость производственных затрат путем внедрения непрерывных процессов (от жидкого металла до готового проката), повышения скорости прокатки и автоматизации всех технологических процессов.

Для повышения качества непрерывнолитого стального слитка имеет большое значение предварительная подготовка расплава к разливке [1]. В отечественной и зарубежной практике непрерывного литья принимают в этом плане целые комплексы технологических мер, с помощью которых достигается, в частности: значительное снижение содержания в металле серы, неметаллических включений, газов, а также предупреждение перегрева и выравнивание температуры и состава стали по высоте ковша.

Как отмечается в [1], важность снятия перегрева диктуется появлением высокопроизводительных радиальных и криволинейных установок, возрастанием скорости разливки, усложнением марочного состава стали. Общеизвестно влияние перегрева на развитие осевой ликвации. Установлено, что при перегреве стали на 20°C около 15% темплетов

[&]quot;Центральный научно-исследовательский институт черной металлургии имени И.П. Бардина", Москва, Россия

²Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана", Москва, Россия

 $^{^{3}}$ Федеральное государственное бюджетное образовательное учреждение высшего образования

[&]quot;Российский химико-технологический университет имени Д.И. Менделеева", Москва, Россия

имеют осевую ликвацию более двух баллов, а с перегревом 30—35°С — около 60%. Получение заданной равномерной температуры стали в объеме и выравнивание ее химического состава по высоте сталеразливочного ковша обеспечивается продувкой жидкого металла инертными газами.

Высокие требования к температурному режиму разливки вызывают необходимость предварительного расчета температуры ликвидуса и снижения погрешности измерения температуры до $\pm 5^{\circ}$ C [2]. На значение температуры ликвидуса оказывает влияние не только концентрация углерода и легирующих элементов, но и неконтролируемые примеси, попадающие со вторичным сырьем (Cu, Zn, Sn и т.п.).

Строгая регламентация методов обработки стали направлена на построение определенной структуры и фазового состава для получения материала с оптимальным сочетанием прочности и пластичности. Разрабатывая новые схемы деформационнотермического обработки (ДТО) при производстве сталей массового назначения, необходимо учитывать множество факторов, оказывающих влияние на материал в зоне деформации. Наиболее важными являются: нагрузка, температура и время воздействия. Влияние перечисленных факторов на послойную неравномерность свойств проката изучено лостаточно полно. Олнако, на роль химической неоднородности исходной литой заготовки в формировании структуры проката, фазового состава и механических свойств - достаточного внимания не обращалось.

Настоящая работа направлена на исследование влияния исходной химической неоднородности на соотношение фазовых и структурных составляющих в прокате после ДТО. Для этого была разработана компьютерная модель, с использованием термодинамического подхода, которая позволяет рассчитывать изменения температуры фазового превращения в конструкционных сталях при небольших отклонениях химического состава.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Были исследованы стали следующего состава: 09Г2С (0.076С-0.024S-0.039Р-0.53Si-1.4Мn-0.4% Ni-0.14Сr, мас. %) и Ст3 (0.20С-0.27Si-0.46Мn-0.03S-0.03Р, мас. %). Исходные слябы изготавливались из непрерывнолитых заготовок. Затем слябы нагревали при температуре 1050°С (1323 К) в течение 10 минут и прокатывали при температуре 900°С (1173 К) для получения листа толщиной 6 мм, после чего резко охлаждали в соленой воде. Относительное уменьшение толщины образцов в результате горячей пластической деформации составило 20%.

Далее, из полученных закаленных горячекатаных листов толщиной 6 мм изготавливали поперечные шлифы для анализа распределения химических элементов по толщине проката, и прямоугольные образцы — для механических испытаний. Для изготовления последних, из листов толщиной 6 мм вырезали пластины толщиной 2 мм ($2 \times 5 \times 50$ мм) с разных расстояний от поверхности (0, 0.25, 0.5 и 2 мм) таким образом, чтобы плоскость 5×50 мм была параллельна поверхности листа, а их продольная ось 50 мм — параллельной направлению прокатки.

Механические свойства (предел прочности σ_B , МПа) оценивали с помощью испытательной машины "INSTRON 1195", по схеме чистый изгиб (ГОСТ 14019—2003), при комнатной температуре.

Распределение химических элементов по толщине проката измеряли на полированных поперечных шлифах методом Оже-спектроскопии с использованием электронного спектрометра "ESCALAB MK-II". Образцы очищали ионами Ar+ в вакуумной камере при давлении около 10^{-5} Па. Таким образом, условия подготовки и исследования образцов исключали их случайное загрязнение. Оже-спектры регистрировались в стационарном режиме пучка (в пятне) с ускоряющим напряжением 3 кВ, постоянным отношением замедления $\Delta E/E$ и модуляционным напряжением 4 В, при фиксированном увеличении 3000× в отдельных выбранных точках шлифа, соответствующих различному расстоянию от поверхности проката. Расчеты относительной атомной концентрации проводились по обычной методике: без учета матричных эффектов, как описано в [3]. При этом рассматривали отношение интенсивности характеристической линии каждого компонента стали к интенсивности линии железа (соответствующей энергии связи Оже-электронов -703 эВ):

$$X_i = \frac{I_i / I_{\text{Fe}}}{\sum_i I_i / I_{\text{Fe}}} \cdot 100\%.$$
 (1)

Полученную таким образом величину относительной атомной концентрации, X_i , можно рассматривать как полуколичественную характеристику распределения элементов по толщине проката.

ТЕРМОДИНАМИЧЕСКАЯ МОДЕЛЬ ВЛИЯНИЯ ХИМИЧЕСКОЙ НЕОДНОРОДНОСТИ НА ТЕМПЕРАТУРУ ФАЗОВОГО ПРЕВРАЩЕНИЯ

Согласно алгоритму, описанному в [4], отклонение температуры ΔT для температуры фазового превращения в системе Fe—C с добавлением легирующих элементов, используя концепцию бесконечно разбавленного (слабого) раствора, где пренебрегается взаимодействием растворенных ком-

понентов друг с другом [5], можно представить следующим образом:

$$\Delta T = RT_0^2 \sum_{i=2}^{n} A_i \{T\} X_i,$$
 (2)

где T_0 — температура фазового превращения в системе Fe-C; п - количество легирующих и примесных элементов в стали; R — универсальная газовая постоянная; X_i — концентрация i-го компонента; $A_i(T)$ — зависящая от температуры функция, связанная с коэффициентом активности Ме, в двойном сплаве $Fe-Me_i$.

Для бесконечно разбавленного раствора функция $A_i(T)$ может быть определена соотношением Гиббса-Дюгема следующим образом:

$$\Delta G_i^{L-S} = RT \ln(A_i(T)X_i), \tag{3}$$

где ΔG_i^{L-S} — изменение химического потенциала i-го компонента при фазовом превращении L—S(жидкое \rightarrow твердое, например).

Функции $A_i(T)$ для равновесного превращения могут быть определены из двойных фазовых диаграмм $Fe-Me_i$, представленных в виде функции температуры (T), зависящей от концентрации X_i элемента Me_i , следующим образом (4):

$$T = T_{\text{Ee}} + RT_{\text{Ee}}^2 A_i(T) X_i, \tag{4}$$

 $T = T_{\rm Fe} + R T_{\rm Fe}^2 A_i(T) X_i, \tag{4}$ где $T_{\rm Fe}$ — температура плавления чистого железа (при $X_{\rm C}=0$).

Поскольку функции $A_i(T)$ в уравнении (4) зависят от температуры, значение ΔT не может быть определено прямой подстановкой $A_i(T)$. Уравнение (4) решается методом последовательного приближения, суть которого заключается в следу-

- Выбирается нулевое приближение (T_0). В настоящей работе, в качестве нулевого приближения использовали значения T_0 из двойной диаграммы Fe—C, а значения $A_i(T_0)$ берутся из двойных диаграмм: $Fe-Me_{i}$.
- Далее, полученное из уравнения (4) значение T подставляется в него в качестве следующего приближения.
- С помощью специально разработанной компьютерной программы, решение уравнения (4) относительно T выполняется до тех пор, пока разница между двумя последовательными приближениями не станет меньше заданной величины (в рассматриваемом случае — менее 0.1 градуса).

Ниже приведен результат аппроксимации линии "солидус" системы Fe—C для равновесия "жидкость + феррит" из [6], где $T_{\rm Fe}=1807~{
m K}$ (1534°C) — температура плавления чистого железа $(при X_C = 0).$

Солидус:
$$T = T_{\text{Fe}} - 252X + 249X^2 - 93.5X^3$$
, (5) $\Delta T = 6.2 \text{ K}$.

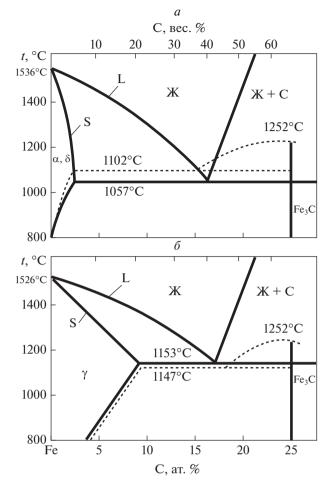
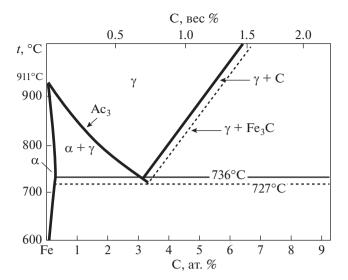


Рис. 1. Диаграмма состояния системы Fe-С из [7]: (а) "стабильное" равновесие в ферритной системе; (δ) равновесие аустенита с графитом и цементитом.


Коэффициенты для расчета температурноконцентрационных зависимостей линий "ликвидус" и "солидус" для двойных систем Fe-Me_i, полученные аппроксимацией данных [7], приведены в таблице в следующем виде.

Солидус:
$$T = T_{\text{Fe}} - S_1(X_i)^2 - S_2(X_i)$$
, (6)

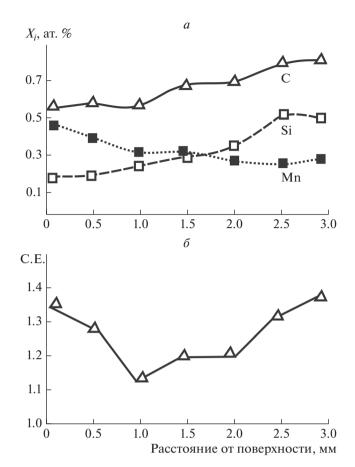
Ликвидус:
$$T = T_{\text{Fe}} - L_1(X_i)^2 - L_2(X_i)$$
, (7)

Значения концентраций X_i в выражениях (1)—(7) подразумеваются в атомных процентах (ат. %).

В настоящей работе рассматривали два варианта равновесия "жидкое-твердое" для системы Fe-C при низких концентрациях углерода: "жидкость + феррит" и "жидкость + аустенит", предложенных в [7], (рис. 1a, 1δ). Температура плавления чистого железа ($X_{\rm C}=0$) для равновесия "жидкость + аустенит" (рис. 1δ), указанная в [7], определенная на основании термодинамических расчетов, отличается от равновесия "жидкость + + феррит" (рис. 1a) на 10 градусов. Вероятнее всего, применимость диаграммы "жидкость +

Рис. 2. Участок диаграммы стабильного и метастабильного состояния системы Fe—C [6].

+ аустенит" (рис. 16) должна наблюдаться в сталях при увеличении концентрации углерода или легирующих элементов, расширяющих область γ -фазы (аустенита). С учетом последнего, приведенные

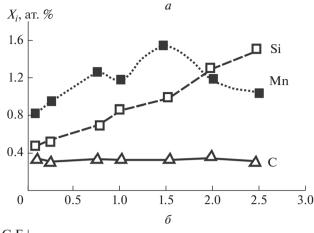

результаты аппроксимации линий "ликвидус" и "солидус" системы Fe—C в табл. 1 — применимы для обоих вариантов равновесия "жидкость + твердое" из [7].

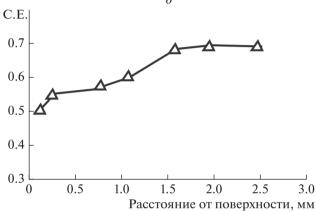
Следует отметить, что при сравнении рассчитанных и экспериментальных значений температур "ликвидус" и "солидус" необходимо учитывать зависимость экспериментальных значений от метода и конкретных условий измерения температуры и химического состава. Поэтому, необходимо сравнивать расчетные и экспериментальные данные для сталей сразу нескольких составов, полученных при одинаковых условиях. Если при этом для какого-либо варианта линии фазового превращения, указанного в таблице, наблюдается постоянный сдвиг: $\Delta T = {\rm const}$, то для конкретных экспериментальных данных следует ввести поправку ($T_0 = T_{\rm Fe} + \Delta T$) во все указанные кривые аппроксимации (6, 7).

В [4] описанную выше модель (4) распространили для расчета отклонения температуры фазового превращения $\alpha + \gamma \rightarrow \gamma$ (температура Ac_3 , рис. 2). При этом было показано, что данный подход применим для низколегированных сталей с суммарным содержанием основных легирующих компонентов — менее 6% масс (Si < 1%, Mn, Cr, Ni).

Таблица 1. Коэффициенты для расчета значений температуры линий "ликвидус" (L_1, L_2) — "солидус" (S_1, S_2) для малоуглеродистых сталей

Растворенный элемент	S_1	S_2	L_1	L_2	Температурный интервал аппроксимации: T_{Fe} - T , °C
Au	5.22	33.2	-0.203	12.197	1535—1431
Be	0.0000485	11.119	_	_	1535—1511
Ce	12.26	1499.5	-0.85186	17.44	1535-1400
Co	-0.00983	2.2835	-0.01087	2.0069	1534—1529
Cr	-0.04647	2.4601	-0.03345	2.1608	1539-1507
Cu	0.51573	4.7535	0.15214	4.7535	1533-1527
Hf	-29.284	151.07	0.9667	15.78	1535—1511
Mn	0	6.5625	0	4.8462	1535—1320
Mo	-0.1275	7.0738	-0.038877	5.0531	1535—1500
Nb	7.5217	37.154	0.3199	11.986	1535—1472
Ni	0.75676	4.3706	0.03602	3.5163	1534—1512
Sc	0.00297	76.5	2.5585	14.196	1535—1200
Si	0.05491	9.707	0.1742	6.057	1528-1350
Ta	0	37.52	0	12.025	1535-1440
Ti	0.09	24.22	0.3125	14.196	1535-1289
V	-0.06087	4.0087	0.03849	3.27	1534—1468
W	-0.3645	3.422	-0.2449	2.895	1535—1527
Y	220.46	154.76	0.81629	15.867	1535—1350
Zn	0.8855	8.9151	0.2	6.0	1535—1420
Zr	2.4862	32.91	0.7594	11.455	1534—1330

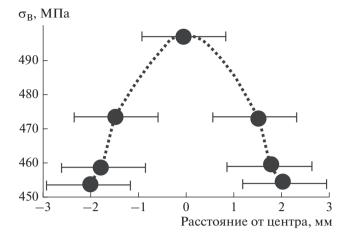



Рис. 3. Изменение по расстоянию от поверхности листового проката толщиной 6 мм стали Ст3 (по данным Оже-спектроскопии): (a) — химического состава, X_i , ат. %; (δ) — аналога углеродного эквивалента, С.Е. = $X_C + (X_{Si} + X_{Mn})/6$, ат. %.

В настоящей работе, используя описанный выше подход [4], по уравнению (4) рассчитали температуру $\mathrm{Ac_3}$ для исследуемых сталей (09Г2С и Ст3). При этом, температура превращения $\gamma \to \alpha$ для чистого Fe (из [6]) в (4): $T_{\mathrm{Fe}} = 1183$ К (910°С). Расчеты выполнялось с помощью компьютера, по специальной программе, написанной на языке QuikBASIC 4.5, описанном в [8], поддерживаемом операционной системой Windows XP.

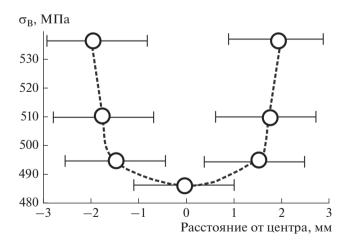
РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Проведенные методом Оже-спектроскопии исследования показали, что послойное распределение химических элементов (С, Мп и Si) в стальном прокатном листе Ст3 толщиной 6 мм — неоднородно. Из рис. За видно, что поверхностный слой стали до глубины 1.25 мм обеднен по С и Si, и обогащен по Мп. Зона с пониженным содержанием Si располагается на расстоянии до 2.0 мм от поверхности. Сердцевина проката более обога-


Рис. 4. Изменение по расстоянию от поверхности листового проката толщиной 6 мм стали 09Г2С (по данным Оже-спектроскопии): (a) — химического состава, X_i , ат. %; (δ) — аналога углеродного эквивалента, С.Е. = $X_C + (X_{Si} + X_{Mn})/6$, ат. %.

щена С и Si, и обеднена Mn, по сравнению с поверхностью.

В образцах стали 09Г2С наблюдается равномерное распределение С по толщине проката; поверхность обеднена Si и Mn до уровня 2 мм. Наблюдается область, обогащенная Mn, на расстоянии 1.5—2.0 мм от поверхности (смотри рис. 4*a*).


Полученные результаты Оже-спектроскопии по химической неоднородности в обеих сталях подчиняются общему условию (смотри рис. 36 и 46, где С.Е. — ат. %): постоянная величина рассчитанного аналога углеродного эквивалента для каждого образца: С.Е. = $X_{\rm C}$ + $(X_{\rm Si} + X_{\rm Mn})/6 \approx {\rm const}$ (± 0.2 ат. %). Химическая неоднородность такого рода наблюдается в непрерывно литых сталях, описанных в работе [2].

Из рис. 5 видно, что значение предела прочности σ_B в сердцевине проката стали Ст3 выше, чем на поверхности. Противоположный эффект наблюдается для проката стали 09Г2С, где величина σ_B в сердцевине ниже, чем на поверхности (рис. 6).

Рис. 5. Изменение предела прочности по расстоянию от поверхности листового проката толщиной 6 мм стали Ст3 после 20% деформации при 900°C (1173 K) и охлаждении в соленой воде.

На рис. 7 представлена рассчитанная зависимость температуры Ac_3 от послойного распределения химических элементов для проката обеих рассматриваемых сталей. Для проката стали Ст3 рассчитанные значения температуры Ac_3 составляют менее 1144 К (871°С), а ее вариация для различных глубин составляет около 22 градусов. Таким образом, можно утверждать, что прокатка стали при температуре выше 1144 К (871°С) происходит в однофазном поле, при этом, химическая неоднородность не приводит к отклонению фазового состава. Хорошо известно, что С, Мп и Si существенно влияют на критические температурные точки и прокаливаемость стали. С другой стороны, здесь наблюдается своеобразное рас-

Рис. 6. Изменение предела прочности по расстоянию от поверхности листового проката толщиной 6 мм стали 09Γ2С после 20% деформации при 900°С (1173 K) и охлаждении в соленой воде.

пределение элементов по сечению проката, проявляющееся обогащением середины проката — Мп, а поверхностных слоев — С и Si, что приводит к равномерному послойному распределению фазового состава проката. Тем не менее, можно увидеть разницу в прочности между поверхностью и сердцевиной стали Ст3. Последнее связано с различием в степени затвердевания раствора в зависимости от неоднородности химического состава, что подтверждается хорошей корреляцией между $\sigma_{\rm B}$ и С.Е. (сравните рис. 36 и рис. 5).

Проведенный анализ на основе предложенной модели показывает, что температура Ac_3 в образцах стали $09\Gamma 2C$ выше $1140~K~(867^{\circ}C)$, а ее изменение, обусловленное химической неоднородностью, составляет около 36~K~(рис. 7). Последнее может существенно влиять на неоднородность фазового состава проката.

Сравнивая результаты расчетов (смотри рис. 7) с результатами механических испытаний, можно предположить, что низкая прочность середины проката стали 09Г2С обусловлена неоднородностью фазового состава. Несмотря на увеличение С.Е. от поверхности к середине проката, прочность сердцевины на 30% ниже, чем на поверхности (сравните рис. 4 с рис. 6). В то же время положение Ас₃ стали 09Г2С ограничено до температуры деформации 900°C (1173 K) на расстоянии 2-3 мм от поверхности проката. В этих условиях любые отклонения температуры ДТО могут привести к различию фазовых составов вблизи поверхности и сердцевины. По-видимому, для листа толщиной 6 мм это может быть связано с аустенитной структурой на поверхности, и с аустенит-ферритовой — на расстоянии 2—3 мм от поверхности.

Как известно, при прокатке металла существует несколько факторов, одновременно влияющих

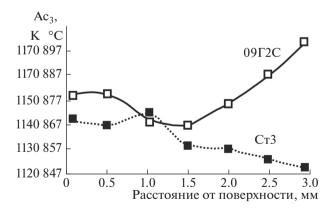


Рис. 7. Изменение температуры фазового превращения, Ac₃, с расстоянием от поверхности листового проката толщиной 6 мм сталей Ct3 и 09Γ2C, обусловленное послойной неоднородностью распределения химических элементов (компьютерное моделирование).

на распределение температуры по глубине, что в свою очередь может влиять на структурно-фазовые превращения. В частности, к таким факторам относятся: адиабатический нагрев металла при деформации и охлаждение поверхности проката вследствие контакта с валками [9]. Как показали настоящие исследования, химическая неоднородность непрерывной литой стальной заготовки тоже может привести к неоднородности фазового распределения в прокате. Это явление наблюдается даже при небольших отклонениях химического состава в пределах диапазона марки стали. Для исследуемых сталей отклонение суммарного содержания основных компонентов стали (С, Mn, Si) в микрообъемах может приводить к заметным колебаниям температуры Ас₃. Учет этого фактора может быть важен для разработки технологии производства высокопрочных горячекатаных сталей со структурой, включающей бейнит и мартенсит.

ЗАКЛЮЧЕНИЕ

Первоначальная химическая неоднородность непрерывно литых заготовок листов сталей 09Г2С и Ст3 после горячей деформации приводит к изменению механических свойств по толщине проката. Предложенная компьютерная термодинамическая модель позволяет качественно оценивать влияние неоднородности химического состава непрерывно литой стали на изменение фазового состава и механических свойств после деформационно-термической обработки. На основе предложенной модели изменение механических свойств исследованных сталей (Ст3 и 09Г2С) может быть объяснено как твердорастворным упрочнением

(температурной зависимостью предела растворимости), так и сдвигом температуры фазового превращения Ac_3 ($\gamma \rightarrow \gamma + \alpha$). Полученные результаты могут быть использованы для развития технологии деформационно-термической обработки непрерывно литой листовой стали ("strip-casting") для создания новых материалов и сталей массового назначения, обладающих улучшенными конечными потребительскими свойствами.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проекты № 19-08-00959 и № 20-08-00591).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Евтеев Д.П., Колыбанов И.Н.* В кн.: Металлургия: стали, сплавы, процессы. М.: Металлургия, 1982. С. 42.
- Engstrom G., Fredriksson H., Rogberg B. // Scand. J. Metallurgy. 1983. No. 12. P. 3.
- 3. *Cux М.П.* В кн.: Анализ поверхности методами Оже- и рентгеновской фотоэлектронной спектроскопии. М.: Мир, 1987. 600 с.
- 4. Sugden A.A.B., Bhadenshia H.K.D.H. // Mater. Sci. Technol. 1989. V. 5. No. 10. P. 977.
- Ландау Л.Д., Лифшиц Е.М. Статистическая физика.
 Ч. 1. Теоретическая физика. М.: ФИЗМАТЛИТ, 2013. 620 с.
- 6. *Гуляев А.П.* Металловедение. М.: Металлургия, 1986. 544 с.
- 7. *Кубашевски О.* Диаграммы состояния двойных систем на основе желез. М.: Металлургия, 1985. 183 с.
- 8. *Зельднер А.Г.* QiuckBASIC для носорога. М.: ABF, 1994. 480 с.
- 9. *Никитин Г.С., Галкин М.П., Жихарев П.Ю.* // Металлургия. 2012. № 10. С. 61.

Computer simulation of chemical heterogeneity in structural steels obtained by combining rolling with continuous casting ("strip-casting" technology)

V. P. Filippova^a, *, E. N. Blinova^a, O. P. Zhukov^a, E. V. Pimenov^a, A. A. Tomchuk^a, b, c

^aBardin Central Research Institute of Ferrous Metallurgy, Moscow, 105005 Russia ^bBauman Moscow State Technical University, Fundamental Science Department, Moscow, 105005 Russia ^cMendeleev University of Chemical Technology, Moscow, 125480 Russia *e-mail: varia.filippova@yandex.ru

Computer modeling based on thermodynamic calculations shows that the temperature of Ac_3 , depending on the chemical composition, can vary by tens of degrees. Thus, chemical heterogeneity in the macro-volumes of rolled continuous cast steels can affect the mechanical properties of rolled products. Auger-spectroscopy and mechanical testing of hardened rolled products of two mass-purpose steels (09G2S and St3) showed that the observed layer-by-layer change in the yield strength in St3 steel is tied with the solid solution heterogeneity, but in 09G2S steel — it is tied with the phase composition heterogeneity.